ok
Direktori : /opt/alt/python35/lib64/python3.5/site-packages/Crypto/SelfTest/PublicKey/ |
Current File : //opt/alt/python35/lib64/python3.5/site-packages/Crypto/SelfTest/PublicKey/test_importKey.py |
# -*- coding: utf-8 -*- # # SelfTest/PublicKey/test_importKey.py: Self-test for importing RSA keys # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== __revision__ = "$Id$" import unittest from Crypto.PublicKey import RSA from Crypto.SelfTest.st_common import * from Crypto.Util.py3compat import * from Crypto.Util.number import inverse from Crypto.Util import asn1 def der2pem(der, text='PUBLIC'): import binascii chunks = [ binascii.b2a_base64(der[i:i+48]) for i in range(0, len(der), 48) ] pem = b('-----BEGIN %s KEY-----\n' % text) pem += b('').join(chunks) pem += b('-----END %s KEY-----' % text) return pem class ImportKeyTests(unittest.TestCase): # 512-bit RSA key generated with openssl rsaKeyPEM = '''-----BEGIN RSA PRIVATE KEY----- MIIBOwIBAAJBAL8eJ5AKoIsjURpcEoGubZMxLD7+kT+TLr7UkvEtFrRhDDKMtuII q19FrL4pUIMymPMSLBn3hJLe30Dw48GQM4UCAwEAAQJACUSDEp8RTe32ftq8IwG8 Wojl5mAd1wFiIOrZ/Uv8b963WJOJiuQcVN29vxU5+My9GPZ7RA3hrDBEAoHUDPrI OQIhAPIPLz4dphiD9imAkivY31Rc5AfHJiQRA7XixTcjEkojAiEAyh/pJHks/Mlr +rdPNEpotBjfV4M4BkgGAA/ipcmaAjcCIQCHvhwwKVBLzzTscT2HeUdEeBMoiXXK JACAr3sJQJGxIQIgarRp+m1WSKV1MciwMaTOnbU7wxFs9DP1pva76lYBzgUCIQC9 n0CnZCJ6IZYqSt0H5N7+Q+2Ro64nuwV/OSQfM6sBwQ== -----END RSA PRIVATE KEY-----''' # As above, but this is actually an unencrypted PKCS#8 key rsaKeyPEM8 = '''-----BEGIN PRIVATE KEY----- MIIBVQIBADANBgkqhkiG9w0BAQEFAASCAT8wggE7AgEAAkEAvx4nkAqgiyNRGlwS ga5tkzEsPv6RP5MuvtSS8S0WtGEMMoy24girX0WsvilQgzKY8xIsGfeEkt7fQPDj wZAzhQIDAQABAkAJRIMSnxFN7fZ+2rwjAbxaiOXmYB3XAWIg6tn9S/xv3rdYk4mK 5BxU3b2/FTn4zL0Y9ntEDeGsMEQCgdQM+sg5AiEA8g8vPh2mGIP2KYCSK9jfVFzk B8cmJBEDteLFNyMSSiMCIQDKH+kkeSz8yWv6t080Smi0GN9XgzgGSAYAD+KlyZoC NwIhAIe+HDApUEvPNOxxPYd5R0R4EyiJdcokAICvewlAkbEhAiBqtGn6bVZIpXUx yLAxpM6dtTvDEWz0M/Wm9rvqVgHOBQIhAL2fQKdkInohlipK3Qfk3v5D7ZGjrie7 BX85JB8zqwHB -----END PRIVATE KEY-----''' # The same RSA private key as in rsaKeyPEM, but now encrypted rsaKeyEncryptedPEM=( # With DES and passphrase 'test' ('test', '''-----BEGIN RSA PRIVATE KEY----- Proc-Type: 4,ENCRYPTED DEK-Info: DES-CBC,AF8F9A40BD2FA2FC Ckl9ex1kaVEWhYC2QBmfaF+YPiR4NFkRXA7nj3dcnuFEzBnY5XULupqQpQI3qbfA u8GYS7+b3toWWiHZivHbAAUBPDIZG9hKDyB9Sq2VMARGsX1yW1zhNvZLIiVJzUHs C6NxQ1IJWOXzTew/xM2I26kPwHIvadq+/VaT8gLQdjdH0jOiVNaevjWnLgrn1mLP BCNRMdcexozWtAFNNqSzfW58MJL2OdMi21ED184EFytIc1BlB+FZiGZduwKGuaKy 9bMbdb/1PSvsSzPsqW7KSSrTw6MgJAFJg6lzIYvR5F4poTVBxwBX3+EyEmShiaNY IRX3TgQI0IjrVuLmvlZKbGWP18FXj7I7k9tSsNOOzllTTdq3ny5vgM3A+ynfAaxp dysKznQ6P+IoqML1WxAID4aGRMWka+uArOJ148Rbj9s= -----END RSA PRIVATE KEY-----''', "\xAF\x8F\x9A\x40\xBD\x2F\xA2\xFC"), # With Triple-DES and passphrase 'rocking' ('rocking', '''-----BEGIN RSA PRIVATE KEY----- Proc-Type: 4,ENCRYPTED DEK-Info: DES-EDE3-CBC,C05D6C07F7FC02F6 w4lwQrXaVoTTJ0GgwY566htTA2/t1YlimhxkxYt9AEeCcidS5M0Wq9ClPiPz9O7F m6K5QpM1rxo1RUE/ZyI85gglRNPdNwkeTOqit+kum7nN73AToX17+irVmOA4Z9E+ 4O07t91GxGMcjUSIFk0ucwEU4jgxRvYscbvOMvNbuZszGdVNzBTVddnShKCsy9i7 nJbPlXeEKYi/OkRgO4PtfqqWQu5GIEFVUf9ev1QV7AvC+kyWTR1wWYnHX265jU5c sopxQQtP8XEHIJEdd5/p1oieRcWTCNyY8EkslxDSsrf0OtZp6mZH9N+KU47cgQtt 9qGORmlWnsIoFFKcDohbtOaWBTKhkj5h6OkLjFjfU/sBeV1c+7wDT3dAy5tawXjG YSxC7qDQIT/RECvV3+oQKEcmpEujn45wAnkTi12BH30= -----END RSA PRIVATE KEY-----''', "\xC0\x5D\x6C\x07\xF7\xFC\x02\xF6"), ) rsaPublicKeyPEM = '''-----BEGIN PUBLIC KEY----- MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAL8eJ5AKoIsjURpcEoGubZMxLD7+kT+T Lr7UkvEtFrRhDDKMtuIIq19FrL4pUIMymPMSLBn3hJLe30Dw48GQM4UCAwEAAQ== -----END PUBLIC KEY-----''' # Obtained using 'ssh-keygen -i -m PKCS8 -f rsaPublicKeyPEM' rsaPublicKeyOpenSSH = '''ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAQQC/HieQCqCLI1EaXBKBrm2TMSw+/pE/ky6+1JLxLRa0YQwyjLbiCKtfRay+KVCDMpjzEiwZ94SS3t9A8OPBkDOF comment\n''' # The private key, in PKCS#1 format encoded with DER rsaKeyDER = a2b_hex( '''3082013b020100024100bf1e27900aa08b23511a5c1281ae6d93312c3efe 913f932ebed492f12d16b4610c328cb6e208ab5f45acbe2950833298f312 2c19f78492dedf40f0e3c190338502030100010240094483129f114dedf6 7edabc2301bc5a88e5e6601dd7016220ead9fd4bfc6fdeb75893898ae41c 54ddbdbf1539f8ccbd18f67b440de1ac30440281d40cfac839022100f20f 2f3e1da61883f62980922bd8df545ce407c726241103b5e2c53723124a23 022100ca1fe924792cfcc96bfab74f344a68b418df578338064806000fe2 a5c99a023702210087be1c3029504bcf34ec713d877947447813288975ca 240080af7b094091b12102206ab469fa6d5648a57531c8b031a4ce9db53b c3116cf433f5a6f6bbea5601ce05022100bd9f40a764227a21962a4add07 e4defe43ed91a3ae27bb057f39241f33ab01c1 '''.replace(" ","")) # The private key, in unencrypted PKCS#8 format encoded with DER rsaKeyDER8 = a2b_hex( '''30820155020100300d06092a864886f70d01010105000482013f3082013 b020100024100bf1e27900aa08b23511a5c1281ae6d93312c3efe913f932 ebed492f12d16b4610c328cb6e208ab5f45acbe2950833298f3122c19f78 492dedf40f0e3c190338502030100010240094483129f114dedf67edabc2 301bc5a88e5e6601dd7016220ead9fd4bfc6fdeb75893898ae41c54ddbdb f1539f8ccbd18f67b440de1ac30440281d40cfac839022100f20f2f3e1da 61883f62980922bd8df545ce407c726241103b5e2c53723124a23022100c a1fe924792cfcc96bfab74f344a68b418df578338064806000fe2a5c99a0 23702210087be1c3029504bcf34ec713d877947447813288975ca240080a f7b094091b12102206ab469fa6d5648a57531c8b031a4ce9db53bc3116cf 433f5a6f6bbea5601ce05022100bd9f40a764227a21962a4add07e4defe4 3ed91a3ae27bb057f39241f33ab01c1 '''.replace(" ","")) rsaPublicKeyDER = a2b_hex( '''305c300d06092a864886f70d0101010500034b003048024100bf1e27900a a08b23511a5c1281ae6d93312c3efe913f932ebed492f12d16b4610c328c b6e208ab5f45acbe2950833298f3122c19f78492dedf40f0e3c190338502 03010001 '''.replace(" ","")) n = int('BF 1E 27 90 0A A0 8B 23 51 1A 5C 12 81 AE 6D 93 31 2C 3E FE 91 3F 93 2E BE D4 92 F1 2D 16 B4 61 0C 32 8C B6 E2 08 AB 5F 45 AC BE 29 50 83 32 98 F3 12 2C 19 F7 84 92 DE DF 40 F0 E3 C1 90 33 85'.replace(" ",""),16) e = 65537 d = int('09 44 83 12 9F 11 4D ED F6 7E DA BC 23 01 BC 5A 88 E5 E6 60 1D D7 01 62 20 EA D9 FD 4B FC 6F DE B7 58 93 89 8A E4 1C 54 DD BD BF 15 39 F8 CC BD 18 F6 7B 44 0D E1 AC 30 44 02 81 D4 0C FA C8 39'.replace(" ",""),16) p = int('00 F2 0F 2F 3E 1D A6 18 83 F6 29 80 92 2B D8 DF 54 5C E4 07 C7 26 24 11 03 B5 E2 C5 37 23 12 4A 23'.replace(" ",""),16) q = int('00 CA 1F E9 24 79 2C FC C9 6B FA B7 4F 34 4A 68 B4 18 DF 57 83 38 06 48 06 00 0F E2 A5 C9 9A 02 37'.replace(" ",""),16) # This is q^{-1} mod p). fastmath and slowmath use pInv (p^{-1} # mod q) instead! qInv = int('00 BD 9F 40 A7 64 22 7A 21 96 2A 4A DD 07 E4 DE FE 43 ED 91 A3 AE 27 BB 05 7F 39 24 1F 33 AB 01 C1'.replace(" ",""),16) pInv = inverse(p,q) def testImportKey1(self): """Verify import of RSAPrivateKey DER SEQUENCE""" key = self.rsa.importKey(self.rsaKeyDER) self.assertTrue(key.has_private()) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) self.assertEqual(key.d, self.d) self.assertEqual(key.p, self.p) self.assertEqual(key.q, self.q) def testImportKey2(self): """Verify import of SubjectPublicKeyInfo DER SEQUENCE""" key = self.rsa.importKey(self.rsaPublicKeyDER) self.assertFalse(key.has_private()) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) def testImportKey3unicode(self): """Verify import of RSAPrivateKey DER SEQUENCE, encoded with PEM as unicode""" key = RSA.importKey(self.rsaKeyPEM) self.assertEqual(key.has_private(),True) # assert_ self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) self.assertEqual(key.d, self.d) self.assertEqual(key.p, self.p) self.assertEqual(key.q, self.q) def testImportKey3bytes(self): """Verify import of RSAPrivateKey DER SEQUENCE, encoded with PEM as byte string""" key = RSA.importKey(b(self.rsaKeyPEM)) self.assertEqual(key.has_private(),True) # assert_ self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) self.assertEqual(key.d, self.d) self.assertEqual(key.p, self.p) self.assertEqual(key.q, self.q) def testImportKey4unicode(self): """Verify import of RSAPrivateKey DER SEQUENCE, encoded with PEM as unicode""" key = RSA.importKey(self.rsaPublicKeyPEM) self.assertEqual(key.has_private(),False) # failIf self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) def testImportKey4bytes(self): """Verify import of SubjectPublicKeyInfo DER SEQUENCE, encoded with PEM as byte string""" key = RSA.importKey(b(self.rsaPublicKeyPEM)) self.assertEqual(key.has_private(),False) # failIf self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) def testImportKey5(self): """Verifies that the imported key is still a valid RSA pair""" key = RSA.importKey(self.rsaKeyPEM) idem = key.encrypt(key.decrypt(b("Test")),0) self.assertEqual(idem[0],b("Test")) def testImportKey6(self): """Verifies that the imported key is still a valid RSA pair""" key = RSA.importKey(self.rsaKeyDER) idem = key.encrypt(key.decrypt(b("Test")),0) self.assertEqual(idem[0],b("Test")) def testImportKey7(self): """Verify import of OpenSSH public key""" key = self.rsa.importKey(self.rsaPublicKeyOpenSSH) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) def testImportKey8(self): """Verify import of encrypted PrivateKeyInfo DER SEQUENCE""" for t in self.rsaKeyEncryptedPEM: key = self.rsa.importKey(t[1], t[0]) self.assertTrue(key.has_private()) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) self.assertEqual(key.d, self.d) self.assertEqual(key.p, self.p) self.assertEqual(key.q, self.q) def testImportKey9(self): """Verify import of unencrypted PrivateKeyInfo DER SEQUENCE""" key = self.rsa.importKey(self.rsaKeyDER8) self.assertTrue(key.has_private()) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) self.assertEqual(key.d, self.d) self.assertEqual(key.p, self.p) self.assertEqual(key.q, self.q) def testImportKey10(self): """Verify import of unencrypted PrivateKeyInfo DER SEQUENCE, encoded with PEM""" key = self.rsa.importKey(self.rsaKeyPEM8) self.assertTrue(key.has_private()) self.assertEqual(key.n, self.n) self.assertEqual(key.e, self.e) self.assertEqual(key.d, self.d) self.assertEqual(key.p, self.p) self.assertEqual(key.q, self.q) def testImportKey11(self): """Verify import of RSAPublicKey DER SEQUENCE""" der = asn1.DerSequence([17, 3]).encode() key = self.rsa.importKey(der) self.assertEqual(key.n, 17) self.assertEqual(key.e, 3) def testImportKey12(self): """Verify import of RSAPublicKey DER SEQUENCE, encoded with PEM""" der = asn1.DerSequence([17, 3]).encode() pem = der2pem(der) key = self.rsa.importKey(pem) self.assertEqual(key.n, 17) self.assertEqual(key.e, 3) ### def testExportKey1(self): key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv]) derKey = key.exportKey("DER") self.assertEqual(derKey, self.rsaKeyDER) def testExportKey2(self): key = self.rsa.construct([self.n, self.e]) derKey = key.exportKey("DER") self.assertEqual(derKey, self.rsaPublicKeyDER) def testExportKey3(self): key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv]) pemKey = key.exportKey("PEM") self.assertEqual(pemKey, b(self.rsaKeyPEM)) def testExportKey4(self): key = self.rsa.construct([self.n, self.e]) pemKey = key.exportKey("PEM") self.assertEqual(pemKey, b(self.rsaPublicKeyPEM)) def testExportKey5(self): key = self.rsa.construct([self.n, self.e]) openssh_1 = key.exportKey("OpenSSH").split() openssh_2 = self.rsaPublicKeyOpenSSH.split() self.assertEqual(openssh_1[0], openssh_2[0]) self.assertEqual(openssh_1[1], openssh_2[1]) def testExportKey4(self): key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv]) # Tuple with index #1 is encrypted with 3DES t = list(map(b,self.rsaKeyEncryptedPEM[1])) # Force the salt being used when exporting key._randfunc = lambda N: (t[2]*divmod(N+len(t[2]),len(t[2]))[0])[:N] pemKey = key.exportKey("PEM", t[0]) self.assertEqual(pemKey, t[1]) def testExportKey5(self): key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv]) derKey = key.exportKey("DER", pkcs=8) self.assertEqual(derKey, self.rsaKeyDER8) def testExportKey6(self): key = self.rsa.construct([self.n, self.e, self.d, self.p, self.q, self.pInv]) pemKey = key.exportKey("PEM", pkcs=8) self.assertEqual(pemKey, b(self.rsaKeyPEM8)) class ImportKeyTestsSlow(ImportKeyTests): def setUp(self): self.rsa = RSA.RSAImplementation(use_fast_math=0) class ImportKeyTestsFast(ImportKeyTests): def setUp(self): self.rsa = RSA.RSAImplementation(use_fast_math=1) if __name__ == '__main__': unittest.main() def get_tests(config={}): tests = [] try: from Crypto.PublicKey import _fastmath tests += list_test_cases(ImportKeyTestsFast) except ImportError: pass tests += list_test_cases(ImportKeyTestsSlow) return tests if __name__ == '__main__': suite = lambda: unittest.TestSuite(get_tests()) unittest.main(defaultTest='suite') # vim:set ts=4 sw=4 sts=4 expandtab: