ok
Direktori : /opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/tests/ |
Current File : //opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/tests/test_nanfunctions.py |
from __future__ import division, absolute_import, print_function import warnings import numpy as np from numpy.testing import ( run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal, assert_no_warnings, assert_raises, assert_array_equal, suppress_warnings ) # Test data _ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170], [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833], [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954], [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]]) # Rows of _ndat with nans removed _rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]), np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]), np.array([0.1042, -0.5954]), np.array([0.1610, 0.1859, 0.3146])] # Rows of _ndat with nans converted to ones _ndat_ones = np.array([[0.6244, 1.0, 0.2692, 0.0116, 1.0, 0.1170], [0.5351, -0.9403, 1.0, 0.2100, 0.4759, 0.2833], [1.0, 1.0, 1.0, 0.1042, 1.0, -0.5954], [0.1610, 1.0, 1.0, 0.1859, 0.3146, 1.0]]) # Rows of _ndat with nans converted to zeros _ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170], [0.5351, -0.9403, 0.0, 0.2100, 0.4759, 0.2833], [0.0, 0.0, 0.0, 0.1042, 0.0, -0.5954], [0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]]) class TestNanFunctions_MinMax(TestCase): nanfuncs = [np.nanmin, np.nanmax] stdfuncs = [np.min, np.max] def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() for f in self.nanfuncs: f(ndat) assert_equal(ndat, _ndat) def test_keepdims(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): for axis in [None, 0, 1]: tgt = rf(mat, axis=axis, keepdims=True) res = nf(mat, axis=axis, keepdims=True) assert_(res.ndim == tgt.ndim) def test_out(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): resout = np.zeros(3) tgt = rf(mat, axis=1) res = nf(mat, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) def test_dtype_from_input(self): codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: mat = np.eye(3, dtype=c) tgt = rf(mat, axis=1).dtype.type res = nf(mat, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, axis=None).dtype.type res = nf(mat, axis=None).dtype.type assert_(res is tgt) def test_result_values(self): for nf, rf in zip(self.nanfuncs, self.stdfuncs): tgt = [rf(d) for d in _rdat] res = nf(_ndat, axis=1) assert_almost_equal(res, tgt) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for f in self.nanfuncs: for axis in [None, 0, 1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(mat, axis=axis)).all()) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) # Check scalars with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(np.nan))) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) def test_masked(self): mat = np.ma.fix_invalid(_ndat) msk = mat._mask.copy() for f in [np.nanmin]: res = f(mat, axis=1) tgt = f(_ndat, axis=1) assert_equal(res, tgt) assert_equal(mat._mask, msk) assert_(not np.isinf(mat).any()) def test_scalar(self): for f in self.nanfuncs: assert_(f(0.) == 0.) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(res.shape == (1, 3)) res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 1)) res = f(mat) assert_(np.isscalar(res)) # check that rows of nan are dealt with for subclasses (#4628) mat[1] = np.nan for f in self.nanfuncs: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(not np.any(np.isnan(res))) assert_(len(w) == 0) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0]) and not np.isnan(res[2, 0])) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat) assert_(np.isscalar(res)) assert_(res != np.nan) assert_(len(w) == 0) def test_object_array(self): arr = np.array([[1.0, 2.0], [np.nan, 4.0], [np.nan, np.nan]], dtype=object) assert_equal(np.nanmin(arr), 1.0) assert_equal(np.nanmin(arr, axis=0), [1.0, 2.0]) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') # assert_equal does not work on object arrays of nan assert_equal(list(np.nanmin(arr, axis=1)), [1.0, 4.0, np.nan]) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) class TestNanFunctions_ArgminArgmax(TestCase): nanfuncs = [np.nanargmin, np.nanargmax] def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() for f in self.nanfuncs: f(ndat) assert_equal(ndat, _ndat) def test_result_values(self): for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]): for row in _ndat: with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in") ind = f(row) val = row[ind] # comparing with NaN is tricky as the result # is always false except for NaN != NaN assert_(not np.isnan(val)) assert_(not fcmp(val, row).any()) assert_(not np.equal(val, row[:ind]).any()) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for f in self.nanfuncs: for axis in [None, 0, 1]: assert_raises(ValueError, f, mat, axis=axis) assert_raises(ValueError, f, np.nan) def test_empty(self): mat = np.zeros((0, 3)) for f in self.nanfuncs: for axis in [0, None]: assert_raises(ValueError, f, mat, axis=axis) for axis in [1]: res = f(mat, axis=axis) assert_equal(res, np.zeros(0)) def test_scalar(self): for f in self.nanfuncs: assert_(f(0.) == 0.) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(res.shape == (1, 3)) res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 1)) res = f(mat) assert_(np.isscalar(res)) class TestNanFunctions_IntTypes(TestCase): int_types = (np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64) mat = np.array([127, 39, 93, 87, 46]) def integer_arrays(self): for dtype in self.int_types: yield self.mat.astype(dtype) def test_nanmin(self): tgt = np.min(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmin(mat), tgt) def test_nanmax(self): tgt = np.max(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmax(mat), tgt) def test_nanargmin(self): tgt = np.argmin(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanargmin(mat), tgt) def test_nanargmax(self): tgt = np.argmax(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanargmax(mat), tgt) def test_nansum(self): tgt = np.sum(self.mat) for mat in self.integer_arrays(): assert_equal(np.nansum(mat), tgt) def test_nanprod(self): tgt = np.prod(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanprod(mat), tgt) def test_nancumsum(self): tgt = np.cumsum(self.mat) for mat in self.integer_arrays(): assert_equal(np.nancumsum(mat), tgt) def test_nancumprod(self): tgt = np.cumprod(self.mat) for mat in self.integer_arrays(): assert_equal(np.nancumprod(mat), tgt) def test_nanmean(self): tgt = np.mean(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmean(mat), tgt) def test_nanvar(self): tgt = np.var(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat), tgt) tgt = np.var(mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat, ddof=1), tgt) def test_nanstd(self): tgt = np.std(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanstd(mat), tgt) tgt = np.std(self.mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanstd(mat, ddof=1), tgt) class SharedNanFunctionsTestsMixin(object): def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() for f in self.nanfuncs: f(ndat) assert_equal(ndat, _ndat) def test_keepdims(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): for axis in [None, 0, 1]: tgt = rf(mat, axis=axis, keepdims=True) res = nf(mat, axis=axis, keepdims=True) assert_(res.ndim == tgt.ndim) def test_out(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): resout = np.zeros(3) tgt = rf(mat, axis=1) res = nf(mat, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) def test_dtype_from_dtype(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type assert_(res is tgt) def test_dtype_from_char(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=c, axis=1).dtype.type res = nf(mat, dtype=c, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=c, axis=None).dtype.type res = nf(mat, dtype=c, axis=None).dtype.type assert_(res is tgt) def test_dtype_from_input(self): codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: mat = np.eye(3, dtype=c) tgt = rf(mat, axis=1).dtype.type res = nf(mat, axis=1).dtype.type assert_(res is tgt, "res %s, tgt %s" % (res, tgt)) # scalar case tgt = rf(mat, axis=None).dtype.type res = nf(mat, axis=None).dtype.type assert_(res is tgt) def test_result_values(self): for nf, rf in zip(self.nanfuncs, self.stdfuncs): tgt = [rf(d) for d in _rdat] res = nf(_ndat, axis=1) assert_almost_equal(res, tgt) def test_scalar(self): for f in self.nanfuncs: assert_(f(0.) == 0.) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(res.shape == (1, 3)) res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 1)) res = f(mat) assert_(np.isscalar(res)) class TestNanFunctions_SumProd(TestCase, SharedNanFunctionsTestsMixin): nanfuncs = [np.nansum, np.nanprod] stdfuncs = [np.sum, np.prod] def test_allnans(self): # Check for FutureWarning with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = np.nansum([np.nan]*3, axis=None) assert_(res == 0, 'result is not 0') assert_(len(w) == 0, 'warning raised') # Check scalar res = np.nansum(np.nan) assert_(res == 0, 'result is not 0') assert_(len(w) == 0, 'warning raised') # Check there is no warning for not all-nan np.nansum([0]*3, axis=None) assert_(len(w) == 0, 'unwanted warning raised') def test_empty(self): for f, tgt_value in zip([np.nansum, np.nanprod], [0, 1]): mat = np.zeros((0, 3)) tgt = [tgt_value]*3 res = f(mat, axis=0) assert_equal(res, tgt) tgt = [] res = f(mat, axis=1) assert_equal(res, tgt) tgt = tgt_value res = f(mat, axis=None) assert_equal(res, tgt) class TestNanFunctions_CumSumProd(TestCase, SharedNanFunctionsTestsMixin): nanfuncs = [np.nancumsum, np.nancumprod] stdfuncs = [np.cumsum, np.cumprod] def test_allnans(self): for f, tgt_value in zip(self.nanfuncs, [0, 1]): # Unlike other nan-functions, sum/prod/cumsum/cumprod don't warn on all nan input with assert_no_warnings(): res = f([np.nan]*3, axis=None) tgt = tgt_value*np.ones((3)) assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((3))' % (tgt_value)) # Check scalar res = f(np.nan) tgt = tgt_value*np.ones((1)) assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((1))' % (tgt_value)) # Check there is no warning for not all-nan f([0]*3, axis=None) def test_empty(self): for f, tgt_value in zip(self.nanfuncs, [0, 1]): mat = np.zeros((0, 3)) tgt = tgt_value*np.ones((0, 3)) res = f(mat, axis=0) assert_equal(res, tgt) tgt = mat res = f(mat, axis=1) assert_equal(res, tgt) tgt = np.zeros((0)) res = f(mat, axis=None) assert_equal(res, tgt) def test_keepdims(self): for f, g in zip(self.nanfuncs, self.stdfuncs): mat = np.eye(3) for axis in [None, 0, 1]: tgt = f(mat, axis=axis, out=None) res = g(mat, axis=axis, out=None) assert_(res.ndim == tgt.ndim) for f in self.nanfuncs: d = np.ones((3, 5, 7, 11)) # Randomly set some elements to NaN: rs = np.random.RandomState(0) d[rs.rand(*d.shape) < 0.5] = np.nan res = f(d, axis=None) assert_equal(res.shape, (1155,)) for axis in np.arange(4): res = f(d, axis=axis) assert_equal(res.shape, (3, 5, 7, 11)) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: for axis in np.arange(2): res = f(mat, axis=axis) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 3)) res = f(mat) assert_(res.shape == (1, 3*3)) def test_result_values(self): for axis in (-2, -1, 0, 1, None): tgt = np.cumprod(_ndat_ones, axis=axis) res = np.nancumprod(_ndat, axis=axis) assert_almost_equal(res, tgt) tgt = np.cumsum(_ndat_zeros,axis=axis) res = np.nancumsum(_ndat, axis=axis) assert_almost_equal(res, tgt) def test_out(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): resout = np.eye(3) for axis in (-2, -1, 0, 1): tgt = rf(mat, axis=axis) res = nf(mat, axis=axis, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) class TestNanFunctions_MeanVarStd(TestCase, SharedNanFunctionsTestsMixin): nanfuncs = [np.nanmean, np.nanvar, np.nanstd] stdfuncs = [np.mean, np.var, np.std] def test_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object_]: assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype) def test_out_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object_]: out = np.empty(_ndat.shape[0], dtype=dtype) assert_raises(TypeError, f, _ndat, axis=1, out=out) def test_ddof(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in [0, 1]: tgt = [rf(d, ddof=ddof) for d in _rdat] res = nf(_ndat, axis=1, ddof=ddof) assert_almost_equal(res, tgt) def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with suppress_warnings() as sup: sup.record(RuntimeWarning) sup.filter(np.ComplexWarning) tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(sup.log) == 1) else: assert_(len(sup.log) == 0) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for f in self.nanfuncs: for axis in [None, 0, 1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(mat, axis=axis)).all()) assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) # Check scalar assert_(np.isnan(f(np.nan))) assert_(len(w) == 2) assert_(issubclass(w[0].category, RuntimeWarning)) def test_empty(self): mat = np.zeros((0, 3)) for f in self.nanfuncs: for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(mat, axis=axis)).all()) assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(f(mat, axis=axis), np.zeros([])) assert_(len(w) == 0) class TestNanFunctions_Median(TestCase): def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() np.nanmedian(ndat) assert_equal(ndat, _ndat) def test_keepdims(self): mat = np.eye(3) for axis in [None, 0, 1]: tgt = np.median(mat, axis=axis, out=None, overwrite_input=False) res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False) assert_(res.ndim == tgt.ndim) d = np.ones((3, 5, 7, 11)) # Randomly set some elements to NaN: w = np.random.random((4, 200)) * np.array(d.shape)[:, None] w = w.astype(np.intp) d[tuple(w)] = np.nan with suppress_warnings() as sup: sup.filter(RuntimeWarning) res = np.nanmedian(d, axis=None, keepdims=True) assert_equal(res.shape, (1, 1, 1, 1)) res = np.nanmedian(d, axis=(0, 1), keepdims=True) assert_equal(res.shape, (1, 1, 7, 11)) res = np.nanmedian(d, axis=(0, 3), keepdims=True) assert_equal(res.shape, (1, 5, 7, 1)) res = np.nanmedian(d, axis=(1,), keepdims=True) assert_equal(res.shape, (3, 1, 7, 11)) res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True) assert_equal(res.shape, (1, 1, 1, 1)) res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True) assert_equal(res.shape, (1, 1, 7, 1)) def test_out(self): mat = np.random.rand(3, 3) nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) resout = np.zeros(3) tgt = np.median(mat, axis=1) res = np.nanmedian(nan_mat, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) # 0-d output: resout = np.zeros(()) tgt = np.median(mat, axis=None) res = np.nanmedian(nan_mat, axis=None, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) res = np.nanmedian(nan_mat, axis=(0, 1), out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) def test_small_large(self): # test the small and large code paths, current cutoff 400 elements for s in [5, 20, 51, 200, 1000]: d = np.random.randn(4, s) # Randomly set some elements to NaN: w = np.random.randint(0, d.size, size=d.size // 5) d.ravel()[w] = np.nan d[:,0] = 1. # ensure at least one good value # use normal median without nans to compare tgt = [] for x in d: nonan = np.compress(~np.isnan(x), x) tgt.append(np.median(nonan, overwrite_input=True)) assert_array_equal(np.nanmedian(d, axis=-1), tgt) def test_result_values(self): tgt = [np.median(d) for d in _rdat] res = np.nanmedian(_ndat, axis=1) assert_almost_equal(res, tgt) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for axis in [None, 0, 1]: with suppress_warnings() as sup: sup.record(RuntimeWarning) assert_(np.isnan(np.nanmedian(mat, axis=axis)).all()) if axis is None: assert_(len(sup.log) == 1) else: assert_(len(sup.log) == 3) # Check scalar assert_(np.isnan(np.nanmedian(np.nan))) if axis is None: assert_(len(sup.log) == 2) else: assert_(len(sup.log) == 4) def test_empty(self): mat = np.zeros((0, 3)) for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(np.nanmedian(mat, axis=axis)).all()) assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(np.nanmedian(mat, axis=axis), np.zeros([])) assert_(len(w) == 0) def test_scalar(self): assert_(np.nanmedian(0.) == 0.) def test_extended_axis_invalid(self): d = np.ones((3, 5, 7, 11)) assert_raises(np.AxisError, np.nanmedian, d, axis=-5) assert_raises(np.AxisError, np.nanmedian, d, axis=(0, -5)) assert_raises(np.AxisError, np.nanmedian, d, axis=4) assert_raises(np.AxisError, np.nanmedian, d, axis=(0, 4)) assert_raises(ValueError, np.nanmedian, d, axis=(1, 1)) def test_float_special(self): with suppress_warnings() as sup: sup.filter(RuntimeWarning) for inf in [np.inf, -np.inf]: a = np.array([[inf, np.nan], [np.nan, np.nan]]) assert_equal(np.nanmedian(a, axis=0), [inf, np.nan]) assert_equal(np.nanmedian(a, axis=1), [inf, np.nan]) assert_equal(np.nanmedian(a), inf) # minimum fill value check a = np.array([[np.nan, np.nan, inf], [np.nan, np.nan, inf]]) assert_equal(np.nanmedian(a), inf) assert_equal(np.nanmedian(a, axis=0), [np.nan, np.nan, inf]) assert_equal(np.nanmedian(a, axis=1), inf) # no mask path a = np.array([[inf, inf], [inf, inf]]) assert_equal(np.nanmedian(a, axis=1), inf) a = np.array([[inf, 7, -inf, -9], [-10, np.nan, np.nan, 5], [4, np.nan, np.nan, inf]], dtype=np.float32) if inf > 0: assert_equal(np.nanmedian(a, axis=0), [4., 7., -inf, 5.]) assert_equal(np.nanmedian(a), 4.5) else: assert_equal(np.nanmedian(a, axis=0), [-10., 7., -inf, -9.]) assert_equal(np.nanmedian(a), -2.5) assert_equal(np.nanmedian(a, axis=-1), [-1., -2.5, inf]) for i in range(0, 10): for j in range(1, 10): a = np.array([([np.nan] * i) + ([inf] * j)] * 2) assert_equal(np.nanmedian(a), inf) assert_equal(np.nanmedian(a, axis=1), inf) assert_equal(np.nanmedian(a, axis=0), ([np.nan] * i) + [inf] * j) a = np.array([([np.nan] * i) + ([-inf] * j)] * 2) assert_equal(np.nanmedian(a), -inf) assert_equal(np.nanmedian(a, axis=1), -inf) assert_equal(np.nanmedian(a, axis=0), ([np.nan] * i) + [-inf] * j) class TestNanFunctions_Percentile(TestCase): def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() np.nanpercentile(ndat, 30) assert_equal(ndat, _ndat) def test_keepdims(self): mat = np.eye(3) for axis in [None, 0, 1]: tgt = np.percentile(mat, 70, axis=axis, out=None, overwrite_input=False) res = np.nanpercentile(mat, 70, axis=axis, out=None, overwrite_input=False) assert_(res.ndim == tgt.ndim) d = np.ones((3, 5, 7, 11)) # Randomly set some elements to NaN: w = np.random.random((4, 200)) * np.array(d.shape)[:, None] w = w.astype(np.intp) d[tuple(w)] = np.nan with suppress_warnings() as sup: sup.filter(RuntimeWarning) res = np.nanpercentile(d, 90, axis=None, keepdims=True) assert_equal(res.shape, (1, 1, 1, 1)) res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True) assert_equal(res.shape, (1, 1, 7, 11)) res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True) assert_equal(res.shape, (1, 5, 7, 1)) res = np.nanpercentile(d, 90, axis=(1,), keepdims=True) assert_equal(res.shape, (3, 1, 7, 11)) res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True) assert_equal(res.shape, (1, 1, 1, 1)) res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True) assert_equal(res.shape, (1, 1, 7, 1)) def test_out(self): mat = np.random.rand(3, 3) nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) resout = np.zeros(3) tgt = np.percentile(mat, 42, axis=1) res = np.nanpercentile(nan_mat, 42, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) # 0-d output: resout = np.zeros(()) tgt = np.percentile(mat, 42, axis=None) res = np.nanpercentile(nan_mat, 42, axis=None, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) def test_result_values(self): tgt = [np.percentile(d, 28) for d in _rdat] res = np.nanpercentile(_ndat, 28, axis=1) assert_almost_equal(res, tgt) # Transpose the array to fit the output convention of numpy.percentile tgt = np.transpose([np.percentile(d, (28, 98)) for d in _rdat]) res = np.nanpercentile(_ndat, (28, 98), axis=1) assert_almost_equal(res, tgt) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for axis in [None, 0, 1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(np.nanpercentile(mat, 60, axis=axis)).all()) if axis is None: assert_(len(w) == 1) else: assert_(len(w) == 3) assert_(issubclass(w[0].category, RuntimeWarning)) # Check scalar assert_(np.isnan(np.nanpercentile(np.nan, 60))) if axis is None: assert_(len(w) == 2) else: assert_(len(w) == 4) assert_(issubclass(w[0].category, RuntimeWarning)) def test_empty(self): mat = np.zeros((0, 3)) for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all()) assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([])) assert_(len(w) == 0) def test_scalar(self): assert_equal(np.nanpercentile(0., 100), 0.) a = np.arange(6) r = np.nanpercentile(a, 50, axis=0) assert_equal(r, 2.5) assert_(np.isscalar(r)) def test_extended_axis_invalid(self): d = np.ones((3, 5, 7, 11)) assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=-5) assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, -5)) assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=4) assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, 4)) assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1)) def test_multiple_percentiles(self): perc = [50, 100] mat = np.ones((4, 3)) nan_mat = np.nan * mat # For checking consistency in higher dimensional case large_mat = np.ones((3, 4, 5)) large_mat[:, 0:2:4, :] = 0 large_mat[:, :, 3:] *= 2 for axis in [None, 0, 1]: for keepdim in [False, True]: with suppress_warnings() as sup: sup.filter(RuntimeWarning, "All-NaN slice encountered") val = np.percentile(mat, perc, axis=axis, keepdims=keepdim) nan_val = np.nanpercentile(nan_mat, perc, axis=axis, keepdims=keepdim) assert_equal(nan_val.shape, val.shape) val = np.percentile(large_mat, perc, axis=axis, keepdims=keepdim) nan_val = np.nanpercentile(large_mat, perc, axis=axis, keepdims=keepdim) assert_equal(nan_val, val) megamat = np.ones((3, 4, 5, 6)) assert_equal(np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6)) if __name__ == "__main__": run_module_suite()