ok
Direktori : /opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/tests/ |
Current File : //opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/tests/test_stride_tricks.py |
from __future__ import division, absolute_import, print_function import numpy as np from numpy.core.test_rational import rational from numpy.testing import ( run_module_suite, assert_equal, assert_array_equal, assert_raises, assert_ ) from numpy.lib.stride_tricks import ( as_strided, broadcast_arrays, _broadcast_shape, broadcast_to ) def assert_shapes_correct(input_shapes, expected_shape): # Broadcast a list of arrays with the given input shapes and check the # common output shape. inarrays = [np.zeros(s) for s in input_shapes] outarrays = broadcast_arrays(*inarrays) outshapes = [a.shape for a in outarrays] expected = [expected_shape] * len(inarrays) assert_equal(outshapes, expected) def assert_incompatible_shapes_raise(input_shapes): # Broadcast a list of arrays with the given (incompatible) input shapes # and check that they raise a ValueError. inarrays = [np.zeros(s) for s in input_shapes] assert_raises(ValueError, broadcast_arrays, *inarrays) def assert_same_as_ufunc(shape0, shape1, transposed=False, flipped=False): # Broadcast two shapes against each other and check that the data layout # is the same as if a ufunc did the broadcasting. x0 = np.zeros(shape0, dtype=int) # Note that multiply.reduce's identity element is 1.0, so when shape1==(), # this gives the desired n==1. n = int(np.multiply.reduce(shape1)) x1 = np.arange(n).reshape(shape1) if transposed: x0 = x0.T x1 = x1.T if flipped: x0 = x0[::-1] x1 = x1[::-1] # Use the add ufunc to do the broadcasting. Since we're adding 0s to x1, the # result should be exactly the same as the broadcasted view of x1. y = x0 + x1 b0, b1 = broadcast_arrays(x0, x1) assert_array_equal(y, b1) def test_same(): x = np.arange(10) y = np.arange(10) bx, by = broadcast_arrays(x, y) assert_array_equal(x, bx) assert_array_equal(y, by) def test_one_off(): x = np.array([[1, 2, 3]]) y = np.array([[1], [2], [3]]) bx, by = broadcast_arrays(x, y) bx0 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) by0 = bx0.T assert_array_equal(bx0, bx) assert_array_equal(by0, by) def test_same_input_shapes(): # Check that the final shape is just the input shape. data = [ (), (1,), (3,), (0, 1), (0, 3), (1, 0), (3, 0), (1, 3), (3, 1), (3, 3), ] for shape in data: input_shapes = [shape] # Single input. assert_shapes_correct(input_shapes, shape) # Double input. input_shapes2 = [shape, shape] assert_shapes_correct(input_shapes2, shape) # Triple input. input_shapes3 = [shape, shape, shape] assert_shapes_correct(input_shapes3, shape) def test_two_compatible_by_ones_input_shapes(): # Check that two different input shapes of the same length, but some have # ones, broadcast to the correct shape. data = [ [[(1,), (3,)], (3,)], [[(1, 3), (3, 3)], (3, 3)], [[(3, 1), (3, 3)], (3, 3)], [[(1, 3), (3, 1)], (3, 3)], [[(1, 1), (3, 3)], (3, 3)], [[(1, 1), (1, 3)], (1, 3)], [[(1, 1), (3, 1)], (3, 1)], [[(1, 0), (0, 0)], (0, 0)], [[(0, 1), (0, 0)], (0, 0)], [[(1, 0), (0, 1)], (0, 0)], [[(1, 1), (0, 0)], (0, 0)], [[(1, 1), (1, 0)], (1, 0)], [[(1, 1), (0, 1)], (0, 1)], ] for input_shapes, expected_shape in data: assert_shapes_correct(input_shapes, expected_shape) # Reverse the input shapes since broadcasting should be symmetric. assert_shapes_correct(input_shapes[::-1], expected_shape) def test_two_compatible_by_prepending_ones_input_shapes(): # Check that two different input shapes (of different lengths) broadcast # to the correct shape. data = [ [[(), (3,)], (3,)], [[(3,), (3, 3)], (3, 3)], [[(3,), (3, 1)], (3, 3)], [[(1,), (3, 3)], (3, 3)], [[(), (3, 3)], (3, 3)], [[(1, 1), (3,)], (1, 3)], [[(1,), (3, 1)], (3, 1)], [[(1,), (1, 3)], (1, 3)], [[(), (1, 3)], (1, 3)], [[(), (3, 1)], (3, 1)], [[(), (0,)], (0,)], [[(0,), (0, 0)], (0, 0)], [[(0,), (0, 1)], (0, 0)], [[(1,), (0, 0)], (0, 0)], [[(), (0, 0)], (0, 0)], [[(1, 1), (0,)], (1, 0)], [[(1,), (0, 1)], (0, 1)], [[(1,), (1, 0)], (1, 0)], [[(), (1, 0)], (1, 0)], [[(), (0, 1)], (0, 1)], ] for input_shapes, expected_shape in data: assert_shapes_correct(input_shapes, expected_shape) # Reverse the input shapes since broadcasting should be symmetric. assert_shapes_correct(input_shapes[::-1], expected_shape) def test_incompatible_shapes_raise_valueerror(): # Check that a ValueError is raised for incompatible shapes. data = [ [(3,), (4,)], [(2, 3), (2,)], [(3,), (3,), (4,)], [(1, 3, 4), (2, 3, 3)], ] for input_shapes in data: assert_incompatible_shapes_raise(input_shapes) # Reverse the input shapes since broadcasting should be symmetric. assert_incompatible_shapes_raise(input_shapes[::-1]) def test_same_as_ufunc(): # Check that the data layout is the same as if a ufunc did the operation. data = [ [[(1,), (3,)], (3,)], [[(1, 3), (3, 3)], (3, 3)], [[(3, 1), (3, 3)], (3, 3)], [[(1, 3), (3, 1)], (3, 3)], [[(1, 1), (3, 3)], (3, 3)], [[(1, 1), (1, 3)], (1, 3)], [[(1, 1), (3, 1)], (3, 1)], [[(1, 0), (0, 0)], (0, 0)], [[(0, 1), (0, 0)], (0, 0)], [[(1, 0), (0, 1)], (0, 0)], [[(1, 1), (0, 0)], (0, 0)], [[(1, 1), (1, 0)], (1, 0)], [[(1, 1), (0, 1)], (0, 1)], [[(), (3,)], (3,)], [[(3,), (3, 3)], (3, 3)], [[(3,), (3, 1)], (3, 3)], [[(1,), (3, 3)], (3, 3)], [[(), (3, 3)], (3, 3)], [[(1, 1), (3,)], (1, 3)], [[(1,), (3, 1)], (3, 1)], [[(1,), (1, 3)], (1, 3)], [[(), (1, 3)], (1, 3)], [[(), (3, 1)], (3, 1)], [[(), (0,)], (0,)], [[(0,), (0, 0)], (0, 0)], [[(0,), (0, 1)], (0, 0)], [[(1,), (0, 0)], (0, 0)], [[(), (0, 0)], (0, 0)], [[(1, 1), (0,)], (1, 0)], [[(1,), (0, 1)], (0, 1)], [[(1,), (1, 0)], (1, 0)], [[(), (1, 0)], (1, 0)], [[(), (0, 1)], (0, 1)], ] for input_shapes, expected_shape in data: assert_same_as_ufunc(input_shapes[0], input_shapes[1], "Shapes: %s %s" % (input_shapes[0], input_shapes[1])) # Reverse the input shapes since broadcasting should be symmetric. assert_same_as_ufunc(input_shapes[1], input_shapes[0]) # Try them transposed, too. assert_same_as_ufunc(input_shapes[0], input_shapes[1], True) # ... and flipped for non-rank-0 inputs in order to test negative # strides. if () not in input_shapes: assert_same_as_ufunc(input_shapes[0], input_shapes[1], False, True) assert_same_as_ufunc(input_shapes[0], input_shapes[1], True, True) def test_broadcast_to_succeeds(): data = [ [np.array(0), (0,), np.array(0)], [np.array(0), (1,), np.zeros(1)], [np.array(0), (3,), np.zeros(3)], [np.ones(1), (1,), np.ones(1)], [np.ones(1), (2,), np.ones(2)], [np.ones(1), (1, 2, 3), np.ones((1, 2, 3))], [np.arange(3), (3,), np.arange(3)], [np.arange(3), (1, 3), np.arange(3).reshape(1, -1)], [np.arange(3), (2, 3), np.array([[0, 1, 2], [0, 1, 2]])], # test if shape is not a tuple [np.ones(0), 0, np.ones(0)], [np.ones(1), 1, np.ones(1)], [np.ones(1), 2, np.ones(2)], # these cases with size 0 are strange, but they reproduce the behavior # of broadcasting with ufuncs (see test_same_as_ufunc above) [np.ones(1), (0,), np.ones(0)], [np.ones((1, 2)), (0, 2), np.ones((0, 2))], [np.ones((2, 1)), (2, 0), np.ones((2, 0))], ] for input_array, shape, expected in data: actual = broadcast_to(input_array, shape) assert_array_equal(expected, actual) def test_broadcast_to_raises(): data = [ [(0,), ()], [(1,), ()], [(3,), ()], [(3,), (1,)], [(3,), (2,)], [(3,), (4,)], [(1, 2), (2, 1)], [(1, 1), (1,)], [(1,), -1], [(1,), (-1,)], [(1, 2), (-1, 2)], ] for orig_shape, target_shape in data: arr = np.zeros(orig_shape) assert_raises(ValueError, lambda: broadcast_to(arr, target_shape)) def test_broadcast_shape(): # broadcast_shape is already exercized indirectly by broadcast_arrays assert_equal(_broadcast_shape(), ()) assert_equal(_broadcast_shape([1, 2]), (2,)) assert_equal(_broadcast_shape(np.ones((1, 1))), (1, 1)) assert_equal(_broadcast_shape(np.ones((1, 1)), np.ones((3, 4))), (3, 4)) assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 32)), (1, 2)) assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 100)), (1, 2)) # regression tests for gh-5862 assert_equal(_broadcast_shape(*([np.ones(2)] * 32 + [1])), (2,)) bad_args = [np.ones(2)] * 32 + [np.ones(3)] * 32 assert_raises(ValueError, lambda: _broadcast_shape(*bad_args)) def test_as_strided(): a = np.array([None]) a_view = as_strided(a) expected = np.array([None]) assert_array_equal(a_view, np.array([None])) a = np.array([1, 2, 3, 4]) a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,)) expected = np.array([1, 3]) assert_array_equal(a_view, expected) a = np.array([1, 2, 3, 4]) a_view = as_strided(a, shape=(3, 4), strides=(0, 1 * a.itemsize)) expected = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) assert_array_equal(a_view, expected) # Regression test for gh-5081 dt = np.dtype([('num', 'i4'), ('obj', 'O')]) a = np.empty((4,), dtype=dt) a['num'] = np.arange(1, 5) a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) expected_num = [[1, 2, 3, 4]] * 3 expected_obj = [[None]*4]*3 assert_equal(a_view.dtype, dt) assert_array_equal(expected_num, a_view['num']) assert_array_equal(expected_obj, a_view['obj']) # Make sure that void types without fields are kept unchanged a = np.empty((4,), dtype='V4') a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) assert_equal(a.dtype, a_view.dtype) # Make sure that the only type that could fail is properly handled dt = np.dtype({'names': [''], 'formats': ['V4']}) a = np.empty((4,), dtype=dt) a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) assert_equal(a.dtype, a_view.dtype) # Custom dtypes should not be lost (gh-9161) r = [rational(i) for i in range(4)] a = np.array(r, dtype=rational) a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) assert_equal(a.dtype, a_view.dtype) assert_array_equal([r] * 3, a_view) def as_strided_writeable(): arr = np.ones(10) view = as_strided(arr, writeable=False) assert_(not view.flags.writeable) # Check that writeable also is fine: view = as_strided(arr, writeable=True) assert_(view.flags.writeable) view[...] = 3 assert_array_equal(arr, np.full_like(arr, 3)) # Test that things do not break down for readonly: arr.flags.writeable = False view = as_strided(arr, writeable=False) view = as_strided(arr, writeable=True) assert_(not view.flags.writeable) class VerySimpleSubClass(np.ndarray): def __new__(cls, *args, **kwargs): kwargs['subok'] = True return np.array(*args, **kwargs).view(cls) class SimpleSubClass(VerySimpleSubClass): def __new__(cls, *args, **kwargs): kwargs['subok'] = True self = np.array(*args, **kwargs).view(cls) self.info = 'simple' return self def __array_finalize__(self, obj): self.info = getattr(obj, 'info', '') + ' finalized' def test_subclasses(): # test that subclass is preserved only if subok=True a = VerySimpleSubClass([1, 2, 3, 4]) assert_(type(a) is VerySimpleSubClass) a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,)) assert_(type(a_view) is np.ndarray) a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True) assert_(type(a_view) is VerySimpleSubClass) # test that if a subclass has __array_finalize__, it is used a = SimpleSubClass([1, 2, 3, 4]) a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True) assert_(type(a_view) is SimpleSubClass) assert_(a_view.info == 'simple finalized') # similar tests for broadcast_arrays b = np.arange(len(a)).reshape(-1, 1) a_view, b_view = broadcast_arrays(a, b) assert_(type(a_view) is np.ndarray) assert_(type(b_view) is np.ndarray) assert_(a_view.shape == b_view.shape) a_view, b_view = broadcast_arrays(a, b, subok=True) assert_(type(a_view) is SimpleSubClass) assert_(a_view.info == 'simple finalized') assert_(type(b_view) is np.ndarray) assert_(a_view.shape == b_view.shape) # and for broadcast_to shape = (2, 4) a_view = broadcast_to(a, shape) assert_(type(a_view) is np.ndarray) assert_(a_view.shape == shape) a_view = broadcast_to(a, shape, subok=True) assert_(type(a_view) is SimpleSubClass) assert_(a_view.info == 'simple finalized') assert_(a_view.shape == shape) def test_writeable(): # broadcast_to should return a readonly array original = np.array([1, 2, 3]) result = broadcast_to(original, (2, 3)) assert_equal(result.flags.writeable, False) assert_raises(ValueError, result.__setitem__, slice(None), 0) # but the result of broadcast_arrays needs to be writeable (for now), to # preserve backwards compatibility for results in [broadcast_arrays(original), broadcast_arrays(0, original)]: for result in results: assert_equal(result.flags.writeable, True) # keep readonly input readonly original.flags.writeable = False _, result = broadcast_arrays(0, original) assert_equal(result.flags.writeable, False) # regression test for GH6491 shape = (2,) strides = [0] tricky_array = as_strided(np.array(0), shape, strides) other = np.zeros((1,)) first, second = broadcast_arrays(tricky_array, other) assert_(first.shape == second.shape) def test_reference_types(): input_array = np.array('a', dtype=object) expected = np.array(['a'] * 3, dtype=object) actual = broadcast_to(input_array, (3,)) assert_array_equal(expected, actual) actual, _ = broadcast_arrays(input_array, np.ones(3)) assert_array_equal(expected, actual) if __name__ == "__main__": run_module_suite()