ok
Direktori : /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/ma/ |
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/ma/core.pyi |
from collections.abc import Callable from typing import Any, TypeVar from numpy import ndarray, dtype, float64 from numpy import ( amax as amax, amin as amin, bool_ as bool_, expand_dims as expand_dims, clip as clip, indices as indices, ones_like as ones_like, squeeze as squeeze, zeros_like as zeros_like, ) from numpy.lib.function_base import ( angle as angle, ) # TODO: Set the `bound` to something more suitable once we # have proper shape support _ShapeType = TypeVar("_ShapeType", bound=Any) _DType_co = TypeVar("_DType_co", bound=dtype[Any], covariant=True) __all__: list[str] MaskType = bool_ nomask: bool_ class MaskedArrayFutureWarning(FutureWarning): ... class MAError(Exception): ... class MaskError(MAError): ... def default_fill_value(obj): ... def minimum_fill_value(obj): ... def maximum_fill_value(obj): ... def set_fill_value(a, fill_value): ... def common_fill_value(a, b): ... def filled(a, fill_value=...): ... def getdata(a, subok=...): ... get_data = getdata def fix_invalid(a, mask=..., copy=..., fill_value=...): ... class _MaskedUFunc: f: Any __doc__: Any __name__: Any def __init__(self, ufunc): ... class _MaskedUnaryOperation(_MaskedUFunc): fill: Any domain: Any def __init__(self, mufunc, fill=..., domain=...): ... def __call__(self, a, *args, **kwargs): ... class _MaskedBinaryOperation(_MaskedUFunc): fillx: Any filly: Any def __init__(self, mbfunc, fillx=..., filly=...): ... def __call__(self, a, b, *args, **kwargs): ... def reduce(self, target, axis=..., dtype=...): ... def outer(self, a, b): ... def accumulate(self, target, axis=...): ... class _DomainedBinaryOperation(_MaskedUFunc): domain: Any fillx: Any filly: Any def __init__(self, dbfunc, domain, fillx=..., filly=...): ... def __call__(self, a, b, *args, **kwargs): ... exp: _MaskedUnaryOperation conjugate: _MaskedUnaryOperation sin: _MaskedUnaryOperation cos: _MaskedUnaryOperation arctan: _MaskedUnaryOperation arcsinh: _MaskedUnaryOperation sinh: _MaskedUnaryOperation cosh: _MaskedUnaryOperation tanh: _MaskedUnaryOperation abs: _MaskedUnaryOperation absolute: _MaskedUnaryOperation fabs: _MaskedUnaryOperation negative: _MaskedUnaryOperation floor: _MaskedUnaryOperation ceil: _MaskedUnaryOperation around: _MaskedUnaryOperation logical_not: _MaskedUnaryOperation sqrt: _MaskedUnaryOperation log: _MaskedUnaryOperation log2: _MaskedUnaryOperation log10: _MaskedUnaryOperation tan: _MaskedUnaryOperation arcsin: _MaskedUnaryOperation arccos: _MaskedUnaryOperation arccosh: _MaskedUnaryOperation arctanh: _MaskedUnaryOperation add: _MaskedBinaryOperation subtract: _MaskedBinaryOperation multiply: _MaskedBinaryOperation arctan2: _MaskedBinaryOperation equal: _MaskedBinaryOperation not_equal: _MaskedBinaryOperation less_equal: _MaskedBinaryOperation greater_equal: _MaskedBinaryOperation less: _MaskedBinaryOperation greater: _MaskedBinaryOperation logical_and: _MaskedBinaryOperation alltrue: _MaskedBinaryOperation logical_or: _MaskedBinaryOperation sometrue: Callable[..., Any] logical_xor: _MaskedBinaryOperation bitwise_and: _MaskedBinaryOperation bitwise_or: _MaskedBinaryOperation bitwise_xor: _MaskedBinaryOperation hypot: _MaskedBinaryOperation divide: _MaskedBinaryOperation true_divide: _MaskedBinaryOperation floor_divide: _MaskedBinaryOperation remainder: _MaskedBinaryOperation fmod: _MaskedBinaryOperation mod: _MaskedBinaryOperation def make_mask_descr(ndtype): ... def getmask(a): ... get_mask = getmask def getmaskarray(arr): ... def is_mask(m): ... def make_mask(m, copy=..., shrink=..., dtype=...): ... def make_mask_none(newshape, dtype=...): ... def mask_or(m1, m2, copy=..., shrink=...): ... def flatten_mask(mask): ... def masked_where(condition, a, copy=...): ... def masked_greater(x, value, copy=...): ... def masked_greater_equal(x, value, copy=...): ... def masked_less(x, value, copy=...): ... def masked_less_equal(x, value, copy=...): ... def masked_not_equal(x, value, copy=...): ... def masked_equal(x, value, copy=...): ... def masked_inside(x, v1, v2, copy=...): ... def masked_outside(x, v1, v2, copy=...): ... def masked_object(x, value, copy=..., shrink=...): ... def masked_values(x, value, rtol=..., atol=..., copy=..., shrink=...): ... def masked_invalid(a, copy=...): ... class _MaskedPrintOption: def __init__(self, display): ... def display(self): ... def set_display(self, s): ... def enabled(self): ... def enable(self, shrink=...): ... masked_print_option: _MaskedPrintOption def flatten_structured_array(a): ... class MaskedIterator: ma: Any dataiter: Any maskiter: Any def __init__(self, ma): ... def __iter__(self): ... def __getitem__(self, indx): ... def __setitem__(self, index, value): ... def __next__(self): ... class MaskedArray(ndarray[_ShapeType, _DType_co]): __array_priority__: Any def __new__(cls, data=..., mask=..., dtype=..., copy=..., subok=..., ndmin=..., fill_value=..., keep_mask=..., hard_mask=..., shrink=..., order=...): ... def __array_finalize__(self, obj): ... def __array_wrap__(self, obj, context=...): ... def view(self, dtype=..., type=..., fill_value=...): ... def __getitem__(self, indx): ... def __setitem__(self, indx, value): ... @property def dtype(self): ... @dtype.setter def dtype(self, dtype): ... @property def shape(self): ... @shape.setter def shape(self, shape): ... def __setmask__(self, mask, copy=...): ... @property def mask(self): ... @mask.setter def mask(self, value): ... @property def recordmask(self): ... @recordmask.setter def recordmask(self, mask): ... def harden_mask(self): ... def soften_mask(self): ... @property def hardmask(self): ... def unshare_mask(self): ... @property def sharedmask(self): ... def shrink_mask(self): ... @property def baseclass(self): ... data: Any @property def flat(self): ... @flat.setter def flat(self, value): ... @property def fill_value(self): ... @fill_value.setter def fill_value(self, value=...): ... get_fill_value: Any set_fill_value: Any def filled(self, fill_value=...): ... def compressed(self): ... def compress(self, condition, axis=..., out=...): ... def __eq__(self, other): ... def __ne__(self, other): ... def __ge__(self, other): ... def __gt__(self, other): ... def __le__(self, other): ... def __lt__(self, other): ... def __add__(self, other): ... def __radd__(self, other): ... def __sub__(self, other): ... def __rsub__(self, other): ... def __mul__(self, other): ... def __rmul__(self, other): ... def __div__(self, other): ... def __truediv__(self, other): ... def __rtruediv__(self, other): ... def __floordiv__(self, other): ... def __rfloordiv__(self, other): ... def __pow__(self, other): ... def __rpow__(self, other): ... def __iadd__(self, other): ... def __isub__(self, other): ... def __imul__(self, other): ... def __idiv__(self, other): ... def __ifloordiv__(self, other): ... def __itruediv__(self, other): ... def __ipow__(self, other): ... def __float__(self): ... def __int__(self): ... @property # type: ignore[misc] def imag(self): ... get_imag: Any @property # type: ignore[misc] def real(self): ... get_real: Any def count(self, axis=..., keepdims=...): ... def ravel(self, order=...): ... def reshape(self, *s, **kwargs): ... def resize(self, newshape, refcheck=..., order=...): ... def put(self, indices, values, mode=...): ... def ids(self): ... def iscontiguous(self): ... def all(self, axis=..., out=..., keepdims=...): ... def any(self, axis=..., out=..., keepdims=...): ... def nonzero(self): ... def trace(self, offset=..., axis1=..., axis2=..., dtype=..., out=...): ... def dot(self, b, out=..., strict=...): ... def sum(self, axis=..., dtype=..., out=..., keepdims=...): ... def cumsum(self, axis=..., dtype=..., out=...): ... def prod(self, axis=..., dtype=..., out=..., keepdims=...): ... product: Any def cumprod(self, axis=..., dtype=..., out=...): ... def mean(self, axis=..., dtype=..., out=..., keepdims=...): ... def anom(self, axis=..., dtype=...): ... def var(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ... def std(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ... def round(self, decimals=..., out=...): ... def argsort(self, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... def argmin(self, axis=..., fill_value=..., out=..., *, keepdims=...): ... def argmax(self, axis=..., fill_value=..., out=..., *, keepdims=...): ... def sort(self, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... def min(self, axis=..., out=..., fill_value=..., keepdims=...): ... # NOTE: deprecated # def tostring(self, fill_value=..., order=...): ... def max(self, axis=..., out=..., fill_value=..., keepdims=...): ... def ptp(self, axis=..., out=..., fill_value=..., keepdims=...): ... def partition(self, *args, **kwargs): ... def argpartition(self, *args, **kwargs): ... def take(self, indices, axis=..., out=..., mode=...): ... copy: Any diagonal: Any flatten: Any repeat: Any squeeze: Any swapaxes: Any T: Any transpose: Any def tolist(self, fill_value=...): ... def tobytes(self, fill_value=..., order=...): ... def tofile(self, fid, sep=..., format=...): ... def toflex(self): ... torecords: Any def __reduce__(self): ... def __deepcopy__(self, memo=...): ... class mvoid(MaskedArray[_ShapeType, _DType_co]): def __new__( self, data, mask=..., dtype=..., fill_value=..., hardmask=..., copy=..., subok=..., ): ... def __getitem__(self, indx): ... def __setitem__(self, indx, value): ... def __iter__(self): ... def __len__(self): ... def filled(self, fill_value=...): ... def tolist(self): ... def isMaskedArray(x): ... isarray = isMaskedArray isMA = isMaskedArray # 0D float64 array class MaskedConstant(MaskedArray[Any, dtype[float64]]): def __new__(cls): ... __class__: Any def __array_finalize__(self, obj): ... def __array_prepare__(self, obj, context=...): ... def __array_wrap__(self, obj, context=...): ... def __format__(self, format_spec): ... def __reduce__(self): ... def __iop__(self, other): ... __iadd__: Any __isub__: Any __imul__: Any __ifloordiv__: Any __itruediv__: Any __ipow__: Any def copy(self, *args, **kwargs): ... def __copy__(self): ... def __deepcopy__(self, memo): ... def __setattr__(self, attr, value): ... masked: MaskedConstant masked_singleton: MaskedConstant masked_array = MaskedArray def array( data, dtype=..., copy=..., order=..., mask=..., fill_value=..., keep_mask=..., hard_mask=..., shrink=..., subok=..., ndmin=..., ): ... def is_masked(x): ... class _extrema_operation(_MaskedUFunc): compare: Any fill_value_func: Any def __init__(self, ufunc, compare, fill_value): ... # NOTE: in practice `b` has a default value, but users should # explicitly provide a value here as the default is deprecated def __call__(self, a, b): ... def reduce(self, target, axis=...): ... def outer(self, a, b): ... def min(obj, axis=..., out=..., fill_value=..., keepdims=...): ... def max(obj, axis=..., out=..., fill_value=..., keepdims=...): ... def ptp(obj, axis=..., out=..., fill_value=..., keepdims=...): ... class _frommethod: __name__: Any __doc__: Any reversed: Any def __init__(self, methodname, reversed=...): ... def getdoc(self): ... def __call__(self, a, *args, **params): ... all: _frommethod anomalies: _frommethod anom: _frommethod any: _frommethod compress: _frommethod cumprod: _frommethod cumsum: _frommethod copy: _frommethod diagonal: _frommethod harden_mask: _frommethod ids: _frommethod mean: _frommethod nonzero: _frommethod prod: _frommethod product: _frommethod ravel: _frommethod repeat: _frommethod soften_mask: _frommethod std: _frommethod sum: _frommethod swapaxes: _frommethod trace: _frommethod var: _frommethod count: _frommethod argmin: _frommethod argmax: _frommethod minimum: _extrema_operation maximum: _extrema_operation def take(a, indices, axis=..., out=..., mode=...): ... def power(a, b, third=...): ... def argsort(a, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... def sort(a, axis=..., kind=..., order=..., endwith=..., fill_value=...): ... def compressed(x): ... def concatenate(arrays, axis=...): ... def diag(v, k=...): ... def left_shift(a, n): ... def right_shift(a, n): ... def put(a, indices, values, mode=...): ... def putmask(a, mask, values): ... def transpose(a, axes=...): ... def reshape(a, new_shape, order=...): ... def resize(x, new_shape): ... def ndim(obj): ... def shape(obj): ... def size(obj, axis=...): ... def diff(a, /, n=..., axis=..., prepend=..., append=...): ... def where(condition, x=..., y=...): ... def choose(indices, choices, out=..., mode=...): ... def round(a, decimals=..., out=...): ... def inner(a, b): ... innerproduct = inner def outer(a, b): ... outerproduct = outer def correlate(a, v, mode=..., propagate_mask=...): ... def convolve(a, v, mode=..., propagate_mask=...): ... def allequal(a, b, fill_value=...): ... def allclose(a, b, masked_equal=..., rtol=..., atol=...): ... def asarray(a, dtype=..., order=...): ... def asanyarray(a, dtype=...): ... def fromflex(fxarray): ... class _convert2ma: __doc__: Any def __init__(self, funcname, params=...): ... def getdoc(self): ... def __call__(self, *args, **params): ... arange: _convert2ma empty: _convert2ma empty_like: _convert2ma frombuffer: _convert2ma fromfunction: _convert2ma identity: _convert2ma ones: _convert2ma zeros: _convert2ma def append(a, b, axis=...): ... def dot(a, b, strict=..., out=...): ... def mask_rowcols(a, axis=...): ...