ok
Direktori : /proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/guppy/etc/ |
Current File : //proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/guppy/etc/KanExtension.py |
class LeftKanExtension: # Implementation of algorithms described by Brown and Heyworth (ref.251) # and Heyworth (ref.253). def __init__(self, mod, A, B, R, X, F): # External subsystem dependencies # mod.KnuthBendix # mod.FiniteAutomaton # mod.SolveFSA # mod.Cat # mod.Cat.Function # mod.Cat.Functor # mod.Cat.check_graph # mod.Cat.check_rules self.mod = mod self.Cat = mod.Cat # self.Cat.check_graph(A) self.Cat.check_graph(B) self.Cat.check_rules(R, B) # self.A = A self.B = B self.R = [(tuple(g), tuple(h)) for (g, h) in R] self.X = X self.F = F self.general_procedure() def general_procedure(self): self.initialize_tables() self.make_confluent_system() self.make_automaton() # self.make_catalogue() self.make_natural_transformation() def initialize_tables(self): self.obj_to_str_table = {} self.str_to_obj_table = {} self.make_initial_rules() def make_initial_rules(self): # Algorithm 6.1 in (251) Re = [] def add_rule(a, b): aw = self.make_word(a) bw = self.make_word(b) if aw != bw: Re.append((aw, bw)) for a in self.A.arrows: srca = self.A.source(a) tgta = self.A.target(a) XA = self.X.fo(srca) Xa = self.X.fa(a) Fa = tuple(self.F.fa(a)) Fsrca = self.F.fo(srca) Ftgta = self.F.fo(tgta) if Fa: t = Fsrca for b in Fa: srcb = self.B.source(b) if srcb != t: raise ValueError( 'Arrow [%s] with source %s does not compose with target %s' % (b, srcb, t)) t = self.B.target(b) if t != Ftgta: raise ValueError( 'Arrow %s with target %s does not compose with %s' % (Fa, t, Ftgta)) else: if Fsrca != Ftgta: raise ValueError( 'Source %s does not match target %s' % (Fsrca, Ftgta)) for x in XA: add_rule(((srca, x),) + Fa, ((tgta, Xa(x)),)) Rk = [(self.make_word(x), self.make_word(y)) for (x, y) in self.R] self.Re = Re self.Rk = Rk self.Rinit = Re + Rk def make_confluent_system(self): self.rs = self.mod.KnuthBendix(self.Rinit, delim='.') self.Rconf = self.rs.reductions def make_automaton(self): # Make nondeterministic finite automaton def target(e): if len(e) == 1 and isinstance(e[0], tuple): return self.F.fo(e[0][0]) else: return self.B.target(e[-1]) XA = [] for A in self.A.objects: for x in self.X.fo(A): XA.append(((A, x),)) follows = dict([(B, []) for B in self.B.objects]) for b, (srcb, tgtb) in list(self.B.arrows.items()): follows[srcb].append((b, tgtb)) IR = dict([(self.make_term(u), self.make_term(v)) for u, v in self.Rconf]) pplR = {} for l, r in self.Rconf: t = self.make_term(l) for i in range(1, len(t)): pplR[t[:i]] = 1 s0 = ('s0',) fsa = self.mod.FiniteAutomaton(s0) for xi in XA: if xi not in IR: fsa.add_transition(s0, xi[0], xi) for xi in XA: for b, tgtb in follows[target(xi)]: bterm = (b,) xib = xi + bterm if xib in pplR: fsa.add_transition(xi, b, xib, tgtb) elif (bterm in pplR and xib not in IR): fsa.add_transition(xi, b, bterm, tgtb) elif xib not in IR: fsa.add_transition(xi, b, tgtb) for Bi in self.B.objects: for b, tgtb in follows[Bi]: bterm = (b,) if bterm in pplR: fsa.add_transition(Bi, b, bterm, tgtb) elif bterm not in IR: fsa.add_transition(Bi, b, tgtb) for u in pplR: if u in XA: continue for b, tgtb in follows[target(u)]: bterm = (b,) ub = u + bterm if ub in pplR: fsa.add_transition(u, b, ub, tgtb) elif self.irreducible(ub): # ub not in IR: fsa.add_transition(u, b, tgtb) def get_RS(Bi): finals = {} finals[Bi] = 1 for xi in XA: if self.F.fo(xi[0][0]) == Bi: finals[xi] = 1 for u in pplR: if target(u) == Bi: finals[u] = 1 for c in fsa.get_composites(): for s in c: if s not in finals: break else: finals[c] = 1 dfa = fsa.get_minimized_dfa(finals) regexp = self.mod.SolveFSA(dfa) return RegularSet(regexp) KB = self.Cat.Function(get_RS, self.B.objects, None) Kb = self.Cat.Function( lambda a: KanAction(self.B, KB, a, target, self.irreducible, self.reduce), self.B.arrows, KanAction, ) self.KB = KB self.Kb = Kb self.K = self.Cat.Functor(KB, Kb) def make_catalogue(self): # Catalogue the elements of the sets pointed to by extension functor K, # according to algorithm described in 7.1 in (251). # Precondition: # Tables initialized and a confluent system created. # The system is assumed to be finite, otherwise we won't terminate. # Postcondition: # Functor self.K represented as: # # self.K.tabo = self.KB = dict mapping, # source: {each B in self.B.objects} # target: sets represented as lists # self.K.taba = self.Kb = dict, mapping # source: {each a in self.B.arrows} # target: tabulated function, mapping # source: KB[source of a] # target: KB[target of a] def target(e): if len(e) == 1: return self.F.fo(e[0][0]) else: return self.B.target(e[-1]) def add_element(e): if self.irreducible(e): block.append(e) KB[target(e)].append(e) else: pass KB = dict([(B, []) for B in self.B.objects]) block = [] for A in self.A.objects: for x in self.X.fo(A): add_element(((A, x),)) while block: oblock = block block = [] for e in oblock: tgt = target(e) for a in self.B.arrows: if self.B.source(a) == tgt: add_element(e + (a,)) Kb = {} for a in self.B.arrows: src = KB[self.B.source(a)] tgt = KB[self.B.target(a)] tab = dict([(s, self.reduce(s + (a,))) for s in src]) Kb[a] = self.Cat.Function(tab, src, tgt) KB = self.Cat.Function(KB, self.B.objects, list(KB.values())) Kb = self.Cat.Function(Kb, self.B.arrows, list(Kb.values())) self.KB = KB self.Kb = Kb self.K = self.Cat.Functor(KB, Kb) def make_natural_transformation(self): # Precondition: # initial tables should be initialized # self.K.fo should exist # Postcondition: # # self.nat[A] for A in self.A.objects get_nat_memo = {} def get_nat(A): if A in get_nat_memo: return get_nat_memo[A] src = self.X.fo(A) tgt = self.K.fo(self.F.fo(A)) tab = dict([(x, self.reduce(((A, x),))) for x in src]) get_nat_memo[A] = self.Cat.Function(tab, src, tgt) return get_nat_memo[A] self.nat = self.Cat.Function(get_nat, self.A.objects, None) def make_word(self, x): ots = self.obj_to_str return '.'.join([ots(e) for e in x if e != '']) def obj_to_str(self, x): otn = self.obj_to_str_table try: return otn[x] except KeyError: assert not (isinstance(x, tuple) and len(x) > 2) n = str(len(otn)) #n = '%d:%s'%(len(otn), x) #n = str(x) otn[x] = n self.str_to_obj_table[n] = x return n def str_to_obj(self, x): return self.str_to_obj_table[x] def irreducible(self, x): tx = self.make_word(x) return tx == self.rs.reduce(tx) def reduce(self, x): w = self.rs.reduce(self.make_word(x)) return self.make_term(w) def make_term(self, word): sto = self.str_to_obj_table return tuple([sto[s] for s in word.split('.') if s]) class KanAction: def __init__(self, B, KB, a, targetof, irreducible, reduce): srca = B.source(a) tgta = B.target(a) self.src = KB(srca) self.tgt = KB(tgta) self.a = a self.srca = srca self.targetof = targetof self.irreducible = irreducible self.reduce = reduce def __call__(self, s): if self.targetof(s) != self.srca: raise TypeError('''\ Target of %r (= %r) does not match source of %r (= %r)''' % ( s, self.targetof(s), self.a, self.srca)) if not self.irreducible(s): raise TypeError('''\ Argument %r is reducible to %r; and is thus not in the source set K.fo(%r)''' % ( s, self.reduce(s), self.srca)) return self.reduce(s + (self.a,)) class RegularSet: # Wraps a regular expression; # provides a set protocol for the underlying set of sequences: # o If the RE specifies a finite language, iteration over its strings # [ o set inclusion ] is_simplified = 0 def __init__(self, re): self.re = re def __iter__(self): return iter(self.uniform) def __getitem__(self, x): return self.uniform[x] def __len__(self): return len(self.uniform) def get_xs_covered(self, coverage): N = coverage X = self.re.limited(coverage) xs = X.sequni() return [tuple(x) for x in xs] def get_uniform(self): self.simplify() return self.re.sequni() uniform = property(fget=get_uniform) def simplify(self): if not self.is_simplified: self.re = self.re.simplified() self.is_simplified = 1 class ObjectTester: def __init__(self, category_tester, object, code): self.category_tester = category_tester self.functor = category_tester.functor self.object = object self.code = code def get_all_arrows(self): return self.category_tester.arrows[self.object] def get_intermediate_test_code(self): return self.code def get_python_test_source_code(self): cmap = { 'aseq': 'assert e[%r] == e[%r]', 'evalfa': 'e[%r] = fa[%r](e[%r])', 'asfo': 'assert fo[%r](e[%r])' } return '\n'.join([cmap[c[0]] % c[1:] for c in self.code]) def execode(self, arg): code = self.get_python_test_source_code() e = {'arg': arg} d = {'fa': self.functor.fa, 'fo': self.functor.fo, 'e': e, } exec(code, d) return e def intercode(self, arg): e = {'arg': arg} fa = self.functor.fa fo = self.functor.fo for c in self.code: a = c[0] if a == 'evalfa': dst, ar, src = c[1:] e[dst] = fa[ar](e[src]) elif a == 'asfo': ob, src = c[1:] if not fo[ob](e[src]): raise ValueError('Predicate failed') elif a == 'aseq': na, nb = c[1:] if e[na] != e[nb]: raise ValueError('e[%r] != e[%r]' % (na, nb)) else: raise ValueError('Invalid code: %r' % (a,)) def test(self, arg): return self.intercode(arg) class CategoryTester: def __init__(self, mod, functor, arrows, get_arrow_name=None): self.mod = mod self.cat = functor.src self.functor = functor self.arrows = arrows if get_arrow_name is not None: self.get_arrow_name = get_arrow_name def get_arrow_name(self, a): return '.'.join(a) def get_eval_arrows_code(self, object, argname): fa = self.functor.fa name = argname memo = {(): name} memolist = [((), name)] codes = [] def eval_arrow(a): if a in memo: return memo[a] a0 = a[:-1] a1 = a[-1] name = self.get_arrow_name(a) na0 = eval_arrow(a0) #codes.append('%s = fa[%r](%s)'%(name, a1, na0)) codes.append(('evalfa', name, a1, na0)) memo[a] = name memolist.append((a, name)) return name for ar in self.arrows[object]: eval_arrow(ar) return codes, memolist def get_object_tester(self, object): code = self.get_test_object_code(object) return ObjectTester(self, object, code) def get_test_inclusion_code(self, object, ml): codes = [] src = self.functor.fo.src for arrow, value in ml: ob = object if arrow: ob = self.cat.graph.target(arrow[-1]) #codes.append('assert fo[%r](%s)'%(ob, value)) if src is None or ob in src: codes.append(('asfo', ob, value)) return codes def get_test_object_code(self, object): argname = 'arg' evalcodes, memolist = self.get_eval_arrows_code(object, argname) relcodes = self.get_test_relations_code(object, memolist) incodes = self.get_test_inclusion_code(object, memolist) return evalcodes+relcodes+incodes def get_test_relations_code(self, object, memolist): codes = [] cat = self.cat fa = self.functor.fa memo = dict(memolist) def teval_arrow(ar): if ar in memo: return memo[ar] a0 = teval_arrow(ar[:-1]) name = self.get_arrow_name(ar) #codes.append('%s = fa[%r](%s)'%(name, ar[-1], a0)) codes.append(('evalfa', name, ar[-1], a0)) memo[ar] = name return name # Check that the equality relations really match up # for all arrows in old memolist, i.e. original unique arrows # which is arguably overkill sometimes?.. for a, b in cat.relations: a = tuple(a) b = tuple(b) src = cat.graph.source(a[0]) for (arr, val) in memolist: if arr: tgt = cat.graph.target(arr[-1]) else: tgt = object if src == tgt: ara = arr + a arb = arr + b if ara != arb: va = teval_arrow(ara) vb = teval_arrow(arb) assert va != vb #codes.append('assert %s == %s'%(va, vb)) codes.append(('aseq', va, vb)) return codes def test_object(self, object, value): tester = self.get_object_tester(object) tester.test(value) return tester def test_object_fail(self, object, value): try: self.test_object(object, value) except Exception: pass else: raise Exception('Exception excepted') class _GLUECLAMP_: # 'imports' def _get_KnuthBendix(self): return self._parent.KnuthBendix.KnuthBendix def _get_FiniteAutomaton(self): return self._parent.FSA.FiniteAutomaton def _get_SolveFSA(self): return self._parent.RE.SolveFSA def _get_Cat(self): return self._parent.Cat # Main exported interface is the lke method # which provides a context for the LeftKanExtension class. def lke(self, A, B, R, X, F): return LeftKanExtension(self, A, B, R, X, F) # Other functions - examples of applications of Kan extension # in alphabetic order def arrows_map(self, cat, from_objects=0, coverage=1): if from_objects: cat = cat.get_dual() A = self.Cat.Graph(cat.graph.objects, []) B = cat.graph R = cat.relations X = self.Cat.Functor(lambda x: [1], lambda x: lambda y: y) F = self.Cat.Functor(lambda x: x, lambda x: []) ke = self.lke(A, B, R, X, F) memo = {} def get_arrows(object): if object in memo: return memo[object] re = ke.K.fo[object].re.rempretup() if from_objects: re = re.reversed() if str(coverage).startswith('length'): maxlen = int(coverage[6:]) ar = [] xs = re.get_words_memo() for i in range(1, maxlen+1): ar.extend([tuple(x) for x in xs.get_words_of_length(i)]) else: re = re.limited(coverage) xs = re.sequni() ar = [tuple(x) for x in xs] memo[object] = ar return ar return self.Cat.Function( get_arrows, src=ke.K.fo.src, tgt=None ) def category_tester(self, functor, arrows=None, coverage=1): if isinstance(functor, tuple): fo, fa, src = functor if fo is None: def fo(x): return lambda y: 1 functor = self.Cat.Functor(fo, fa, src) if arrows is None: arrows = self.arrows_map( functor.src, from_objects=1, coverage=coverage) return CategoryTester(self, functor, arrows) def coequalizer(self, S0, S1, f0, f1): # Given # # S0, S1 sets (objects that can be iterated over) # f0, f1 functions from S0 to S1 # # Return a coequalizing function, # such that in the following diagram: # # S0 ===== S0 # | | # | f0 | f1 # | | # V V # S1 ===== S1 ==== coequalizing_function.src # | # | coequalizing_function # | # V # coequalizing_function.tgt # both paths from S0 to coequalizing_function.tgt will be equivalent, # and coequalizing_function.tgt is a colimit of all such sets. # # The coequalizing_function object is callable with # an argument from S1, and has the following attributes: # .src is identical to S1 # .tgt is a set in iterable form # .asdict() returns a dict representing the mapping objects = [0, 1] arrows = {'a0': (0, 1), 'a1': (0, 1)} A = self.Cat.Graph(objects, arrows) Xo = self.Cat.Function({0: S0, 1: S1}, objects, [S0, S1]) Xa = self.Cat.Function({'a0': f0, 'a1': f1}, arrows, [f0, f1]) X = self.Cat.Functor(Xo, Xa) colimit_object, colimit_functions = self.colimit(A, X) return colimit_functions[1] def colimit(self, A, X): # According to 9.6 in (ref.251) B = self.Cat.Graph([0], {}) R = [] F = self.Cat.Functor(lambda x: 0, lambda x: ()) lka = self.lke(A, B, R, X, F) colimit_object = lka.KB[0] colimit_functions = lka.nat # Reduce elements to a smaller (but isomorphic) form # I.E since elements are all of the form # ((A, X),) # they can be reduced to the form # (A, X) # colimit_object = [x[0] for x in colimit_object] colimit_functions = dict([ (A, self.Cat.Function( dict([(a, k[0]) for (a, k) in list(cof.items())]), cof.src, colimit_object, ) ) for (A, cof) in list(colimit_functions.items())]) return colimit_object, colimit_functions def test_arrows(self, functor, object, value): # Application of arrow listing to test sequencing # Discussed in Notes Mar 9 2005 tester = self.category_tester(functor) return tester.test_object(object, value)