ok
Direktori : /proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/core/tests/ |
Current File : //proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/core/tests/test_einsum.py |
from __future__ import division, absolute_import, print_function import numpy as np from numpy.testing import ( TestCase, run_module_suite, assert_, assert_equal, assert_array_equal, assert_almost_equal, assert_raises, suppress_warnings ) # Setup for optimize einsum chars = 'abcdefghij' sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3]) global_size_dict = {} for size, char in zip(sizes, chars): global_size_dict[char] = size class TestEinSum(TestCase): def test_einsum_errors(self): for do_opt in [True, False]: # Need enough arguments assert_raises(ValueError, np.einsum, optimize=do_opt) assert_raises(ValueError, np.einsum, "", optimize=do_opt) # subscripts must be a string assert_raises(TypeError, np.einsum, 0, 0, optimize=do_opt) # out parameter must be an array assert_raises(TypeError, np.einsum, "", 0, out='test', optimize=do_opt) # order parameter must be a valid order assert_raises(TypeError, np.einsum, "", 0, order='W', optimize=do_opt) # casting parameter must be a valid casting assert_raises(ValueError, np.einsum, "", 0, casting='blah', optimize=do_opt) # dtype parameter must be a valid dtype assert_raises(TypeError, np.einsum, "", 0, dtype='bad_data_type', optimize=do_opt) # other keyword arguments are rejected assert_raises(TypeError, np.einsum, "", 0, bad_arg=0, optimize=do_opt) # issue 4528 revealed a segfault with this call assert_raises(TypeError, np.einsum, *(None,)*63, optimize=do_opt) # number of operands must match count in subscripts string assert_raises(ValueError, np.einsum, "", 0, 0, optimize=do_opt) assert_raises(ValueError, np.einsum, ",", 0, [0], [0], optimize=do_opt) assert_raises(ValueError, np.einsum, ",", [0], optimize=do_opt) # can't have more subscripts than dimensions in the operand assert_raises(ValueError, np.einsum, "i", 0, optimize=do_opt) assert_raises(ValueError, np.einsum, "ij", [0, 0], optimize=do_opt) assert_raises(ValueError, np.einsum, "...i", 0, optimize=do_opt) assert_raises(ValueError, np.einsum, "i...j", [0, 0], optimize=do_opt) assert_raises(ValueError, np.einsum, "i...", 0, optimize=do_opt) assert_raises(ValueError, np.einsum, "ij...", [0, 0], optimize=do_opt) # invalid ellipsis assert_raises(ValueError, np.einsum, "i..", [0, 0], optimize=do_opt) assert_raises(ValueError, np.einsum, ".i...", [0, 0], optimize=do_opt) assert_raises(ValueError, np.einsum, "j->..j", [0, 0], optimize=do_opt) assert_raises(ValueError, np.einsum, "j->.j...", [0, 0], optimize=do_opt) # invalid subscript character assert_raises(ValueError, np.einsum, "i%...", [0, 0], optimize=do_opt) assert_raises(ValueError, np.einsum, "...j$", [0, 0], optimize=do_opt) assert_raises(ValueError, np.einsum, "i->&", [0, 0], optimize=do_opt) # output subscripts must appear in input assert_raises(ValueError, np.einsum, "i->ij", [0, 0], optimize=do_opt) # output subscripts may only be specified once assert_raises(ValueError, np.einsum, "ij->jij", [[0, 0], [0, 0]], optimize=do_opt) # dimensions much match when being collapsed assert_raises(ValueError, np.einsum, "ii", np.arange(6).reshape(2, 3), optimize=do_opt) assert_raises(ValueError, np.einsum, "ii->i", np.arange(6).reshape(2, 3), optimize=do_opt) # broadcasting to new dimensions must be enabled explicitly assert_raises(ValueError, np.einsum, "i", np.arange(6).reshape(2, 3), optimize=do_opt) assert_raises(ValueError, np.einsum, "i->i", [[0, 1], [0, 1]], out=np.arange(4).reshape(2, 2), optimize=do_opt) def test_einsum_views(self): # pass-through for do_opt in [True, False]: a = np.arange(6) a.shape = (2, 3) b = np.einsum("...", a, optimize=do_opt) assert_(b.base is a) b = np.einsum(a, [Ellipsis], optimize=do_opt) assert_(b.base is a) b = np.einsum("ij", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, a) b = np.einsum(a, [0, 1], optimize=do_opt) assert_(b.base is a) assert_equal(b, a) # output is writeable whenever input is writeable b = np.einsum("...", a, optimize=do_opt) assert_(b.flags['WRITEABLE']) a.flags['WRITEABLE'] = False b = np.einsum("...", a, optimize=do_opt) assert_(not b.flags['WRITEABLE']) # transpose a = np.arange(6) a.shape = (2, 3) b = np.einsum("ji", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, a.T) b = np.einsum(a, [1, 0], optimize=do_opt) assert_(b.base is a) assert_equal(b, a.T) # diagonal a = np.arange(9) a.shape = (3, 3) b = np.einsum("ii->i", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, [a[i, i] for i in range(3)]) b = np.einsum(a, [0, 0], [0], optimize=do_opt) assert_(b.base is a) assert_equal(b, [a[i, i] for i in range(3)]) # diagonal with various ways of broadcasting an additional dimension a = np.arange(27) a.shape = (3, 3, 3) b = np.einsum("...ii->...i", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a]) b = np.einsum(a, [Ellipsis, 0, 0], [Ellipsis, 0], optimize=do_opt) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a]) b = np.einsum("ii...->...i", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(2, 0, 1)]) b = np.einsum(a, [0, 0, Ellipsis], [Ellipsis, 0], optimize=do_opt) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(2, 0, 1)]) b = np.einsum("...ii->i...", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum(a, [Ellipsis, 0, 0], [0, Ellipsis], optimize=do_opt) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum("jii->ij", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum(a, [1, 0, 0], [0, 1], optimize=do_opt) assert_(b.base is a) assert_equal(b, [a[:, i, i] for i in range(3)]) b = np.einsum("ii...->i...", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)]) b = np.einsum(a, [0, 0, Ellipsis], [0, Ellipsis], optimize=do_opt) assert_(b.base is a) assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)]) b = np.einsum("i...i->i...", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)]) b = np.einsum(a, [0, Ellipsis, 0], [0, Ellipsis], optimize=do_opt) assert_(b.base is a) assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)]) b = np.einsum("i...i->...i", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(1, 0, 2)]) b = np.einsum(a, [0, Ellipsis, 0], [Ellipsis, 0], optimize=do_opt) assert_(b.base is a) assert_equal(b, [[x[i, i] for i in range(3)] for x in a.transpose(1, 0, 2)]) # triple diagonal a = np.arange(27) a.shape = (3, 3, 3) b = np.einsum("iii->i", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, [a[i, i, i] for i in range(3)]) b = np.einsum(a, [0, 0, 0], [0], optimize=do_opt) assert_(b.base is a) assert_equal(b, [a[i, i, i] for i in range(3)]) # swap axes a = np.arange(24) a.shape = (2, 3, 4) b = np.einsum("ijk->jik", a, optimize=do_opt) assert_(b.base is a) assert_equal(b, a.swapaxes(0, 1)) b = np.einsum(a, [0, 1, 2], [1, 0, 2], optimize=do_opt) assert_(b.base is a) assert_equal(b, a.swapaxes(0, 1)) def check_einsum_sums(self, dtype, do_opt=False): # Check various sums. Does many sizes to exercise unrolled loops. # sum(a, axis=-1) for n in range(1, 17): a = np.arange(n, dtype=dtype) assert_equal(np.einsum("i->", a, optimize=do_opt), np.sum(a, axis=-1).astype(dtype)) assert_equal(np.einsum(a, [0], [], optimize=do_opt), np.sum(a, axis=-1).astype(dtype)) for n in range(1, 17): a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n) assert_equal(np.einsum("...i->...", a, optimize=do_opt), np.sum(a, axis=-1).astype(dtype)) assert_equal(np.einsum(a, [Ellipsis, 0], [Ellipsis], optimize=do_opt), np.sum(a, axis=-1).astype(dtype)) # sum(a, axis=0) for n in range(1, 17): a = np.arange(2*n, dtype=dtype).reshape(2, n) assert_equal(np.einsum("i...->...", a, optimize=do_opt), np.sum(a, axis=0).astype(dtype)) assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis], optimize=do_opt), np.sum(a, axis=0).astype(dtype)) for n in range(1, 17): a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n) assert_equal(np.einsum("i...->...", a, optimize=do_opt), np.sum(a, axis=0).astype(dtype)) assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis], optimize=do_opt), np.sum(a, axis=0).astype(dtype)) # trace(a) for n in range(1, 17): a = np.arange(n*n, dtype=dtype).reshape(n, n) assert_equal(np.einsum("ii", a, optimize=do_opt), np.trace(a).astype(dtype)) assert_equal(np.einsum(a, [0, 0], optimize=do_opt), np.trace(a).astype(dtype)) # multiply(a, b) assert_equal(np.einsum("..., ...", 3, 4), 12) # scalar case for n in range(1, 17): a = np.arange(3 * n, dtype=dtype).reshape(3, n) b = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n) assert_equal(np.einsum("..., ...", a, b, optimize=do_opt), np.multiply(a, b)) assert_equal(np.einsum(a, [Ellipsis], b, [Ellipsis], optimize=do_opt), np.multiply(a, b)) # inner(a,b) for n in range(1, 17): a = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("...i, ...i", a, b, optimize=do_opt), np.inner(a, b)) assert_equal(np.einsum(a, [Ellipsis, 0], b, [Ellipsis, 0], optimize=do_opt), np.inner(a, b)) for n in range(1, 11): a = np.arange(n * 3 * 2, dtype=dtype).reshape(n, 3, 2) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("i..., i...", a, b, optimize=do_opt), np.inner(a.T, b.T).T) assert_equal(np.einsum(a, [0, Ellipsis], b, [0, Ellipsis], optimize=do_opt), np.inner(a.T, b.T).T) # outer(a,b) for n in range(1, 17): a = np.arange(3, dtype=dtype)+1 b = np.arange(n, dtype=dtype)+1 assert_equal(np.einsum("i,j", a, b, optimize=do_opt), np.outer(a, b)) assert_equal(np.einsum(a, [0], b, [1], optimize=do_opt), np.outer(a, b)) # Suppress the complex warnings for the 'as f8' tests with suppress_warnings() as sup: sup.filter(np.ComplexWarning) # matvec(a,b) / a.dot(b) where a is matrix, b is vector for n in range(1, 17): a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("ij, j", a, b, optimize=do_opt), np.dot(a, b)) assert_equal(np.einsum(a, [0, 1], b, [1], optimize=do_opt), np.dot(a, b)) c = np.arange(4, dtype=dtype) np.einsum("ij,j", a, b, out=c, dtype='f8', casting='unsafe', optimize=do_opt) assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) c[...] = 0 np.einsum(a, [0, 1], b, [1], out=c, dtype='f8', casting='unsafe', optimize=do_opt) assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) for n in range(1, 17): a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n, dtype=dtype) assert_equal(np.einsum("ji,j", a.T, b.T, optimize=do_opt), np.dot(b.T, a.T)) assert_equal(np.einsum(a.T, [1, 0], b.T, [1], optimize=do_opt), np.dot(b.T, a.T)) c = np.arange(4, dtype=dtype) np.einsum("ji,j", a.T, b.T, out=c, dtype='f8', casting='unsafe', optimize=do_opt) assert_equal(c, np.dot(b.T.astype('f8'), a.T.astype('f8')).astype(dtype)) c[...] = 0 np.einsum(a.T, [1, 0], b.T, [1], out=c, dtype='f8', casting='unsafe', optimize=do_opt) assert_equal(c, np.dot(b.T.astype('f8'), a.T.astype('f8')).astype(dtype)) # matmat(a,b) / a.dot(b) where a is matrix, b is matrix for n in range(1, 17): if n < 8 or dtype != 'f2': a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n*6, dtype=dtype).reshape(n, 6) assert_equal(np.einsum("ij,jk", a, b, optimize=do_opt), np.dot(a, b)) assert_equal(np.einsum(a, [0, 1], b, [1, 2], optimize=do_opt), np.dot(a, b)) for n in range(1, 17): a = np.arange(4*n, dtype=dtype).reshape(4, n) b = np.arange(n*6, dtype=dtype).reshape(n, 6) c = np.arange(24, dtype=dtype).reshape(4, 6) np.einsum("ij,jk", a, b, out=c, dtype='f8', casting='unsafe', optimize=do_opt) assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) c[...] = 0 np.einsum(a, [0, 1], b, [1, 2], out=c, dtype='f8', casting='unsafe', optimize=do_opt) assert_equal(c, np.dot(a.astype('f8'), b.astype('f8')).astype(dtype)) # matrix triple product (note this is not currently an efficient # way to multiply 3 matrices) a = np.arange(12, dtype=dtype).reshape(3, 4) b = np.arange(20, dtype=dtype).reshape(4, 5) c = np.arange(30, dtype=dtype).reshape(5, 6) if dtype != 'f2': assert_equal(np.einsum("ij,jk,kl", a, b, c, optimize=do_opt), a.dot(b).dot(c)) assert_equal(np.einsum(a, [0, 1], b, [1, 2], c, [2, 3], optimize=do_opt), a.dot(b).dot(c)) d = np.arange(18, dtype=dtype).reshape(3, 6) np.einsum("ij,jk,kl", a, b, c, out=d, dtype='f8', casting='unsafe', optimize=do_opt) tgt = a.astype('f8').dot(b.astype('f8')) tgt = tgt.dot(c.astype('f8')).astype(dtype) assert_equal(d, tgt) d[...] = 0 np.einsum(a, [0, 1], b, [1, 2], c, [2, 3], out=d, dtype='f8', casting='unsafe', optimize=do_opt) tgt = a.astype('f8').dot(b.astype('f8')) tgt = tgt.dot(c.astype('f8')).astype(dtype) assert_equal(d, tgt) # tensordot(a, b) if np.dtype(dtype) != np.dtype('f2'): a = np.arange(60, dtype=dtype).reshape(3, 4, 5) b = np.arange(24, dtype=dtype).reshape(4, 3, 2) assert_equal(np.einsum("ijk, jil -> kl", a, b), np.tensordot(a, b, axes=([1, 0], [0, 1]))) assert_equal(np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3]), np.tensordot(a, b, axes=([1, 0], [0, 1]))) c = np.arange(10, dtype=dtype).reshape(5, 2) np.einsum("ijk,jil->kl", a, b, out=c, dtype='f8', casting='unsafe', optimize=do_opt) assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'), axes=([1, 0], [0, 1])).astype(dtype)) c[...] = 0 np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3], out=c, dtype='f8', casting='unsafe', optimize=do_opt) assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'), axes=([1, 0], [0, 1])).astype(dtype)) # logical_and(logical_and(a!=0, b!=0), c!=0) a = np.array([1, 3, -2, 0, 12, 13, 0, 1], dtype=dtype) b = np.array([0, 3.5, 0., -2, 0, 1, 3, 12], dtype=dtype) c = np.array([True, True, False, True, True, False, True, True]) assert_equal(np.einsum("i,i,i->i", a, b, c, dtype='?', casting='unsafe', optimize=do_opt), np.logical_and(np.logical_and(a != 0, b != 0), c != 0)) assert_equal(np.einsum(a, [0], b, [0], c, [0], [0], dtype='?', casting='unsafe'), np.logical_and(np.logical_and(a != 0, b != 0), c != 0)) a = np.arange(9, dtype=dtype) assert_equal(np.einsum(",i->", 3, a), 3*np.sum(a)) assert_equal(np.einsum(3, [], a, [0], []), 3*np.sum(a)) assert_equal(np.einsum("i,->", a, 3), 3*np.sum(a)) assert_equal(np.einsum(a, [0], 3, [], []), 3*np.sum(a)) # Various stride0, contiguous, and SSE aligned variants for n in range(1, 25): a = np.arange(n, dtype=dtype) if np.dtype(dtype).itemsize > 1: assert_equal(np.einsum("...,...", a, a, optimize=do_opt), np.multiply(a, a)) assert_equal(np.einsum("i,i", a, a, optimize=do_opt), np.dot(a, a)) assert_equal(np.einsum("i,->i", a, 2, optimize=do_opt), 2*a) assert_equal(np.einsum(",i->i", 2, a, optimize=do_opt), 2*a) assert_equal(np.einsum("i,->", a, 2, optimize=do_opt), 2*np.sum(a)) assert_equal(np.einsum(",i->", 2, a, optimize=do_opt), 2*np.sum(a)) assert_equal(np.einsum("...,...", a[1:], a[:-1], optimize=do_opt), np.multiply(a[1:], a[:-1])) assert_equal(np.einsum("i,i", a[1:], a[:-1], optimize=do_opt), np.dot(a[1:], a[:-1])) assert_equal(np.einsum("i,->i", a[1:], 2, optimize=do_opt), 2*a[1:]) assert_equal(np.einsum(",i->i", 2, a[1:], optimize=do_opt), 2*a[1:]) assert_equal(np.einsum("i,->", a[1:], 2, optimize=do_opt), 2*np.sum(a[1:])) assert_equal(np.einsum(",i->", 2, a[1:], optimize=do_opt), 2*np.sum(a[1:])) # An object array, summed as the data type a = np.arange(9, dtype=object) b = np.einsum("i->", a, dtype=dtype, casting='unsafe') assert_equal(b, np.sum(a)) assert_equal(b.dtype, np.dtype(dtype)) b = np.einsum(a, [0], [], dtype=dtype, casting='unsafe') assert_equal(b, np.sum(a)) assert_equal(b.dtype, np.dtype(dtype)) # A case which was failing (ticket #1885) p = np.arange(2) + 1 q = np.arange(4).reshape(2, 2) + 3 r = np.arange(4).reshape(2, 2) + 7 assert_equal(np.einsum('z,mz,zm->', p, q, r), 253) def test_einsum_sums_int8(self): self.check_einsum_sums('i1') def test_einsum_sums_uint8(self): self.check_einsum_sums('u1') def test_einsum_sums_int16(self): self.check_einsum_sums('i2') def test_einsum_sums_uint16(self): self.check_einsum_sums('u2') def test_einsum_sums_int32(self): self.check_einsum_sums('i4') self.check_einsum_sums('i4', True) def test_einsum_sums_uint32(self): self.check_einsum_sums('u4') self.check_einsum_sums('u4', True) def test_einsum_sums_int64(self): self.check_einsum_sums('i8') def test_einsum_sums_uint64(self): self.check_einsum_sums('u8') def test_einsum_sums_float16(self): self.check_einsum_sums('f2') def test_einsum_sums_float32(self): self.check_einsum_sums('f4') def test_einsum_sums_float64(self): self.check_einsum_sums('f8') self.check_einsum_sums('f8', True) def test_einsum_sums_longdouble(self): self.check_einsum_sums(np.longdouble) def test_einsum_sums_cfloat64(self): self.check_einsum_sums('c8') self.check_einsum_sums('c8', True) def test_einsum_sums_cfloat128(self): self.check_einsum_sums('c16') def test_einsum_sums_clongdouble(self): self.check_einsum_sums(np.clongdouble) def test_einsum_misc(self): # This call used to crash because of a bug in # PyArray_AssignZero a = np.ones((1, 2)) b = np.ones((2, 2, 1)) assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]]) assert_equal(np.einsum('ij...,j...->i...', a, b, optimize=True), [[[2], [2]]]) # The iterator had an issue with buffering this reduction a = np.ones((5, 12, 4, 2, 3), np.int64) b = np.ones((5, 12, 11), np.int64) assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b), np.einsum('ijklm,ijn->', a, b)) assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b, optimize=True), np.einsum('ijklm,ijn->', a, b, optimize=True)) # Issue #2027, was a problem in the contiguous 3-argument # inner loop implementation a = np.arange(1, 3) b = np.arange(1, 5).reshape(2, 2) c = np.arange(1, 9).reshape(4, 2) assert_equal(np.einsum('x,yx,zx->xzy', a, b, c), [[[1, 3], [3, 9], [5, 15], [7, 21]], [[8, 16], [16, 32], [24, 48], [32, 64]]]) assert_equal(np.einsum('x,yx,zx->xzy', a, b, c, optimize=True), [[[1, 3], [3, 9], [5, 15], [7, 21]], [[8, 16], [16, 32], [24, 48], [32, 64]]]) def test_einsum_broadcast(self): # Issue #2455 change in handling ellipsis # remove the 'middle broadcast' error # only use the 'RIGHT' iteration in prepare_op_axes # adds auto broadcast on left where it belongs # broadcast on right has to be explicit # We need to test the optimized parsing as well A = np.arange(2 * 3 * 4).reshape(2, 3, 4) B = np.arange(3) ref = np.einsum('ijk,j->ijk', A, B) assert_equal(np.einsum('ij...,j...->ij...', A, B), ref) assert_equal(np.einsum('ij...,...j->ij...', A, B), ref) assert_equal(np.einsum('ij...,j->ij...', A, B), ref) # used to raise error assert_equal(np.einsum('ij...,j...->ij...', A, B, optimize=True), ref) assert_equal(np.einsum('ij...,...j->ij...', A, B, optimize=True), ref) assert_equal(np.einsum('ij...,j->ij...', A, B, optimize=True), ref) # used to raise error A = np.arange(12).reshape((4, 3)) B = np.arange(6).reshape((3, 2)) ref = np.einsum('ik,kj->ij', A, B) assert_equal(np.einsum('ik...,k...->i...', A, B), ref) assert_equal(np.einsum('ik...,...kj->i...j', A, B), ref) assert_equal(np.einsum('...k,kj', A, B), ref) # used to raise error assert_equal(np.einsum('ik,k...->i...', A, B), ref) # used to raise error assert_equal(np.einsum('ik...,k...->i...', A, B, optimize=True), ref) assert_equal(np.einsum('ik...,...kj->i...j', A, B, optimize=True), ref) assert_equal(np.einsum('...k,kj', A, B, optimize=True), ref) # used to raise error assert_equal(np.einsum('ik,k...->i...', A, B, optimize=True), ref) # used to raise error dims = [2, 3, 4, 5] a = np.arange(np.prod(dims)).reshape(dims) v = np.arange(dims[2]) ref = np.einsum('ijkl,k->ijl', a, v) assert_equal(np.einsum('ijkl,k', a, v), ref) assert_equal(np.einsum('...kl,k', a, v), ref) # used to raise error assert_equal(np.einsum('...kl,k...', a, v), ref) # no real diff from 1st assert_equal(np.einsum('ijkl,k', a, v, optimize=True), ref) assert_equal(np.einsum('...kl,k', a, v, optimize=True), ref) # used to raise error assert_equal(np.einsum('...kl,k...', a, v, optimize=True), ref) J, K, M = 160, 160, 120 A = np.arange(J * K * M).reshape(1, 1, 1, J, K, M) B = np.arange(J * K * M * 3).reshape(J, K, M, 3) ref = np.einsum('...lmn,...lmno->...o', A, B) assert_equal(np.einsum('...lmn,lmno->...o', A, B), ref) # used to raise error assert_equal(np.einsum('...lmn,lmno->...o', A, B, optimize=True), ref) # used to raise error def test_einsum_fixedstridebug(self): # Issue #4485 obscure einsum bug # This case revealed a bug in nditer where it reported a stride # as 'fixed' (0) when it was in fact not fixed during processing # (0 or 4). The reason for the bug was that the check for a fixed # stride was using the information from the 2D inner loop reuse # to restrict the iteration dimensions it had to validate to be # the same, but that 2D inner loop reuse logic is only triggered # during the buffer copying step, and hence it was invalid to # rely on those values. The fix is to check all the dimensions # of the stride in question, which in the test case reveals that # the stride is not fixed. # # NOTE: This test is triggered by the fact that the default buffersize, # used by einsum, is 8192, and 3*2731 = 8193, is larger than that # and results in a mismatch between the buffering and the # striding for operand A. A = np.arange(2 * 3).reshape(2, 3).astype(np.float32) B = np.arange(2 * 3 * 2731).reshape(2, 3, 2731).astype(np.int16) es = np.einsum('cl, cpx->lpx', A, B) tp = np.tensordot(A, B, axes=(0, 0)) assert_equal(es, tp) # The following is the original test case from the bug report, # made repeatable by changing random arrays to aranges. A = np.arange(3 * 3).reshape(3, 3).astype(np.float64) B = np.arange(3 * 3 * 64 * 64).reshape(3, 3, 64, 64).astype(np.float32) es = np.einsum('cl, cpxy->lpxy', A, B) tp = np.tensordot(A, B, axes=(0, 0)) assert_equal(es, tp) def test_einsum_fixed_collapsingbug(self): # Issue #5147. # The bug only occurred when output argument of einssum was used. x = np.random.normal(0, 1, (5, 5, 5, 5)) y1 = np.zeros((5, 5)) np.einsum('aabb->ab', x, out=y1) idx = np.arange(5) y2 = x[idx[:, None], idx[:, None], idx, idx] assert_equal(y1, y2) def test_einsum_all_contig_non_contig_output(self): # Issue gh-5907, tests that the all contiguous special case # actually checks the contiguity of the output x = np.ones((5, 5)) out = np.ones(10)[::2] correct_base = np.ones(10) correct_base[::2] = 5 # Always worked (inner iteration is done with 0-stride): np.einsum('mi,mi,mi->m', x, x, x, out=out) assert_array_equal(out.base, correct_base) # Example 1: out = np.ones(10)[::2] np.einsum('im,im,im->m', x, x, x, out=out) assert_array_equal(out.base, correct_base) # Example 2, buffering causes x to be contiguous but # special cases do not catch the operation before: out = np.ones((2, 2, 2))[..., 0] correct_base = np.ones((2, 2, 2)) correct_base[..., 0] = 2 x = np.ones((2, 2), np.float32) np.einsum('ij,jk->ik', x, x, out=out) assert_array_equal(out.base, correct_base) def test_small_boolean_arrays(self): # See gh-5946. # Use array of True embedded in False. a = np.zeros((16, 1, 1), dtype=np.bool_)[:2] a[...] = True out = np.zeros((16, 1, 1), dtype=np.bool_)[:2] tgt = np.ones((2, 1, 1), dtype=np.bool_) res = np.einsum('...ij,...jk->...ik', a, a, out=out) assert_equal(res, tgt) def optimize_compare(self, string): # Tests all paths of the optimization function against # conventional einsum operands = [string] terms = string.split('->')[0].split(',') for term in terms: dims = [global_size_dict[x] for x in term] operands.append(np.random.rand(*dims)) noopt = np.einsum(*operands, optimize=False) opt = np.einsum(*operands, optimize='greedy') assert_almost_equal(opt, noopt) opt = np.einsum(*operands, optimize='optimal') assert_almost_equal(opt, noopt) def test_hadamard_like_products(self): # Hadamard outer products self.optimize_compare('a,ab,abc->abc') self.optimize_compare('a,b,ab->ab') def test_index_transformations(self): # Simple index transformation cases self.optimize_compare('ea,fb,gc,hd,abcd->efgh') self.optimize_compare('ea,fb,abcd,gc,hd->efgh') self.optimize_compare('abcd,ea,fb,gc,hd->efgh') def test_complex(self): # Long test cases self.optimize_compare('acdf,jbje,gihb,hfac,gfac,gifabc,hfac') self.optimize_compare('acdf,jbje,gihb,hfac,gfac,gifabc,hfac') self.optimize_compare('cd,bdhe,aidb,hgca,gc,hgibcd,hgac') self.optimize_compare('abhe,hidj,jgba,hiab,gab') self.optimize_compare('bde,cdh,agdb,hica,ibd,hgicd,hiac') self.optimize_compare('chd,bde,agbc,hiad,hgc,hgi,hiad') self.optimize_compare('chd,bde,agbc,hiad,bdi,cgh,agdb') self.optimize_compare('bdhe,acad,hiab,agac,hibd') def test_collapse(self): # Inner products self.optimize_compare('ab,ab,c->') self.optimize_compare('ab,ab,c->c') self.optimize_compare('ab,ab,cd,cd->') self.optimize_compare('ab,ab,cd,cd->ac') self.optimize_compare('ab,ab,cd,cd->cd') self.optimize_compare('ab,ab,cd,cd,ef,ef->') def test_expand(self): # Outer products self.optimize_compare('ab,cd,ef->abcdef') self.optimize_compare('ab,cd,ef->acdf') self.optimize_compare('ab,cd,de->abcde') self.optimize_compare('ab,cd,de->be') self.optimize_compare('ab,bcd,cd->abcd') self.optimize_compare('ab,bcd,cd->abd') def test_edge_cases(self): # Difficult edge cases for optimization self.optimize_compare('eb,cb,fb->cef') self.optimize_compare('dd,fb,be,cdb->cef') self.optimize_compare('bca,cdb,dbf,afc->') self.optimize_compare('dcc,fce,ea,dbf->ab') self.optimize_compare('fdf,cdd,ccd,afe->ae') self.optimize_compare('abcd,ad') self.optimize_compare('ed,fcd,ff,bcf->be') self.optimize_compare('baa,dcf,af,cde->be') self.optimize_compare('bd,db,eac->ace') self.optimize_compare('fff,fae,bef,def->abd') self.optimize_compare('efc,dbc,acf,fd->abe') self.optimize_compare('ba,ac,da->bcd') def test_inner_product(self): # Inner products self.optimize_compare('ab,ab') self.optimize_compare('ab,ba') self.optimize_compare('abc,abc') self.optimize_compare('abc,bac') self.optimize_compare('abc,cba') def test_random_cases(self): # Randomly built test cases self.optimize_compare('aab,fa,df,ecc->bde') self.optimize_compare('ecb,fef,bad,ed->ac') self.optimize_compare('bcf,bbb,fbf,fc->') self.optimize_compare('bb,ff,be->e') self.optimize_compare('bcb,bb,fc,fff->') self.optimize_compare('fbb,dfd,fc,fc->') self.optimize_compare('afd,ba,cc,dc->bf') self.optimize_compare('adb,bc,fa,cfc->d') self.optimize_compare('bbd,bda,fc,db->acf') self.optimize_compare('dba,ead,cad->bce') self.optimize_compare('aef,fbc,dca->bde') class TestEinSumPath(TestCase): def build_operands(self, string): # Builds views based off initial operands operands = [string] terms = string.split('->')[0].split(',') for term in terms: dims = [global_size_dict[x] for x in term] operands.append(np.random.rand(*dims)) return operands def assert_path_equal(self, comp, benchmark): # Checks if list of tuples are equivalent ret = (len(comp) == len(benchmark)) assert_(ret) for pos in range(len(comp) - 1): ret &= isinstance(comp[pos + 1], tuple) ret &= (comp[pos + 1] == benchmark[pos + 1]) assert_(ret) def test_memory_contraints(self): # Ensure memory constraints are satisfied outer_test = self.build_operands('a,b,c->abc') path, path_str = np.einsum_path(*outer_test, optimize=('greedy', 0)) self.assert_path_equal(path, ['einsum_path', (0, 1, 2)]) path, path_str = np.einsum_path(*outer_test, optimize=('optimal', 0)) self.assert_path_equal(path, ['einsum_path', (0, 1, 2)]) long_test = self.build_operands('acdf,jbje,gihb,hfac') path, path_str = np.einsum_path(*long_test, optimize=('greedy', 0)) self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)]) path, path_str = np.einsum_path(*long_test, optimize=('optimal', 0)) self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)]) def test_long_paths(self): # Long complex cases # Long test 1 long_test1 = self.build_operands('acdf,jbje,gihb,hfac,gfac,gifabc,hfac') path, path_str = np.einsum_path(*long_test1, optimize='greedy') self.assert_path_equal(path, ['einsum_path', (1, 4), (2, 4), (1, 4), (1, 3), (1, 2), (0, 1)]) path, path_str = np.einsum_path(*long_test1, optimize='optimal') self.assert_path_equal(path, ['einsum_path', (3, 6), (3, 4), (2, 4), (2, 3), (0, 2), (0, 1)]) # Long test 2 long_test2 = self.build_operands('chd,bde,agbc,hiad,bdi,cgh,agdb') path, path_str = np.einsum_path(*long_test2, optimize='greedy') self.assert_path_equal(path, ['einsum_path', (3, 4), (0, 3), (3, 4), (1, 3), (1, 2), (0, 1)]) path, path_str = np.einsum_path(*long_test2, optimize='optimal') self.assert_path_equal(path, ['einsum_path', (0, 5), (1, 4), (3, 4), (1, 3), (1, 2), (0, 1)]) def test_edge_paths(self): # Difficult edge cases # Edge test1 edge_test1 = self.build_operands('eb,cb,fb->cef') path, path_str = np.einsum_path(*edge_test1, optimize='greedy') self.assert_path_equal(path, ['einsum_path', (0, 2), (0, 1)]) path, path_str = np.einsum_path(*edge_test1, optimize='optimal') self.assert_path_equal(path, ['einsum_path', (0, 2), (0, 1)]) # Edge test2 edge_test2 = self.build_operands('dd,fb,be,cdb->cef') path, path_str = np.einsum_path(*edge_test2, optimize='greedy') self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 1), (0, 1)]) path, path_str = np.einsum_path(*edge_test2, optimize='optimal') self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 1), (0, 1)]) # Edge test3 edge_test3 = self.build_operands('bca,cdb,dbf,afc->') path, path_str = np.einsum_path(*edge_test3, optimize='greedy') self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)]) path, path_str = np.einsum_path(*edge_test3, optimize='optimal') self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)]) # Edge test4 edge_test4 = self.build_operands('dcc,fce,ea,dbf->ab') path, path_str = np.einsum_path(*edge_test4, optimize='greedy') self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 2), (0, 1)]) path, path_str = np.einsum_path(*edge_test4, optimize='optimal') self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)]) def test_path_type_input(self): # Test explicit path handeling path_test = self.build_operands('dcc,fce,ea,dbf->ab') path, path_str = np.einsum_path(*path_test, optimize=False) self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)]) path, path_str = np.einsum_path(*path_test, optimize=True) self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 2), (0, 1)]) exp_path = ['einsum_path', (0, 2), (0, 2), (0, 1)] path, path_str = np.einsum_path(*path_test, optimize=exp_path) self.assert_path_equal(path, exp_path) # Double check einsum works on the input path noopt = np.einsum(*path_test, optimize=False) opt = np.einsum(*path_test, optimize=exp_path) assert_almost_equal(noopt, opt) if __name__ == "__main__": run_module_suite()