ok

Mini Shell

Direktori : /proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/ma/tests/
Upload File :
Current File : //proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/ma/tests/test_subclassing.py

# pylint: disable-msg=W0611, W0612, W0511,R0201
"""Tests suite for MaskedArray & subclassing.

:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $

"""
from __future__ import division, absolute_import, print_function

import numpy as np
from numpy.testing import TestCase, run_module_suite, assert_raises, dec
from numpy.ma.testutils import assert_equal
from numpy.ma.core import (
    array, arange, masked, MaskedArray, masked_array, log, add, hypot,
    divide, asarray, asanyarray, nomask
    )
# from numpy.ma.core import (


class SubArray(np.ndarray):
    # Defines a generic np.ndarray subclass, that stores some metadata
    # in the  dictionary `info`.
    def __new__(cls,arr,info={}):
        x = np.asanyarray(arr).view(cls)
        x.info = info.copy()
        return x

    def __array_finalize__(self, obj):
        if callable(getattr(super(SubArray, self),
                            '__array_finalize__', None)):
            super(SubArray, self).__array_finalize__(obj)
        self.info = getattr(obj, 'info', {}).copy()
        return

    def __add__(self, other):
        result = super(SubArray, self).__add__(other)
        result.info['added'] = result.info.get('added', 0) + 1
        return result

    def __iadd__(self, other):
        result = super(SubArray, self).__iadd__(other)
        result.info['iadded'] = result.info.get('iadded', 0) + 1
        return result


subarray = SubArray


class SubMaskedArray(MaskedArray):
    """Pure subclass of MaskedArray, keeping some info on subclass."""
    def __new__(cls, info=None, **kwargs):
        obj = super(SubMaskedArray, cls).__new__(cls, **kwargs)
        obj._optinfo['info'] = info
        return obj


class MSubArray(SubArray, MaskedArray):

    def __new__(cls, data, info={}, mask=nomask):
        subarr = SubArray(data, info)
        _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
        _data.info = subarr.info
        return _data

    def _get_series(self):
        _view = self.view(MaskedArray)
        _view._sharedmask = False
        return _view
    _series = property(fget=_get_series)

msubarray = MSubArray


class MMatrix(MaskedArray, np.matrix,):

    def __new__(cls, data, mask=nomask):
        mat = np.matrix(data)
        _data = MaskedArray.__new__(cls, data=mat, mask=mask)
        return _data

    def __array_finalize__(self, obj):
        np.matrix.__array_finalize__(self, obj)
        MaskedArray.__array_finalize__(self, obj)
        return

    def _get_series(self):
        _view = self.view(MaskedArray)
        _view._sharedmask = False
        return _view
    _series = property(fget=_get_series)

mmatrix = MMatrix


# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
# setting to non-class values (and thus np.ma.core.masked_print_option)
# and overrides __array_wrap__, updating the info dict, to check that this
# doesn't get destroyed by MaskedArray._update_from.  But this one also needs
# its own iterator...
class CSAIterator(object):
    """
    Flat iterator object that uses its own setter/getter
    (works around ndarray.flat not propagating subclass setters/getters
    see https://github.com/numpy/numpy/issues/4564)
    roughly following MaskedIterator
    """
    def __init__(self, a):
        self._original = a
        self._dataiter = a.view(np.ndarray).flat

    def __iter__(self):
        return self

    def __getitem__(self, indx):
        out = self._dataiter.__getitem__(indx)
        if not isinstance(out, np.ndarray):
            out = out.__array__()
        out = out.view(type(self._original))
        return out

    def __setitem__(self, index, value):
        self._dataiter[index] = self._original._validate_input(value)

    def __next__(self):
        return next(self._dataiter).__array__().view(type(self._original))

    next = __next__


class ComplicatedSubArray(SubArray):

    def __str__(self):
        return 'myprefix {0} mypostfix'.format(self.view(SubArray))

    def __repr__(self):
        # Return a repr that does not start with 'name('
        return '<{0} {1}>'.format(self.__class__.__name__, self)

    def _validate_input(self, value):
        if not isinstance(value, ComplicatedSubArray):
            raise ValueError("Can only set to MySubArray values")
        return value

    def __setitem__(self, item, value):
        # validation ensures direct assignment with ndarray or
        # masked_print_option will fail
        super(ComplicatedSubArray, self).__setitem__(
            item, self._validate_input(value))

    def __getitem__(self, item):
        # ensure getter returns our own class also for scalars
        value = super(ComplicatedSubArray, self).__getitem__(item)
        if not isinstance(value, np.ndarray):  # scalar
            value = value.__array__().view(ComplicatedSubArray)
        return value

    @property
    def flat(self):
        return CSAIterator(self)

    @flat.setter
    def flat(self, value):
        y = self.ravel()
        y[:] = value

    def __array_wrap__(self, obj, context=None):
        obj = super(ComplicatedSubArray, self).__array_wrap__(obj, context)
        if context is not None and context[0] is np.multiply:
            obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1

        return obj


class TestSubclassing(TestCase):
    # Test suite for masked subclasses of ndarray.

    def setUp(self):
        x = np.arange(5, dtype='float')
        mx = mmatrix(x, mask=[0, 1, 0, 0, 0])
        self.data = (x, mx)

    def test_data_subclassing(self):
        # Tests whether the subclass is kept.
        x = np.arange(5)
        m = [0, 0, 1, 0, 0]
        xsub = SubArray(x)
        xmsub = masked_array(xsub, mask=m)
        self.assertTrue(isinstance(xmsub, MaskedArray))
        assert_equal(xmsub._data, xsub)
        self.assertTrue(isinstance(xmsub._data, SubArray))

    def test_maskedarray_subclassing(self):
        # Tests subclassing MaskedArray
        (x, mx) = self.data
        self.assertTrue(isinstance(mx._data, np.matrix))

    def test_masked_unary_operations(self):
        # Tests masked_unary_operation
        (x, mx) = self.data
        with np.errstate(divide='ignore'):
            self.assertTrue(isinstance(log(mx), mmatrix))
            assert_equal(log(x), np.log(x))

    def test_masked_binary_operations(self):
        # Tests masked_binary_operation
        (x, mx) = self.data
        # Result should be a mmatrix
        self.assertTrue(isinstance(add(mx, mx), mmatrix))
        self.assertTrue(isinstance(add(mx, x), mmatrix))
        # Result should work
        assert_equal(add(mx, x), mx+x)
        self.assertTrue(isinstance(add(mx, mx)._data, np.matrix))
        self.assertTrue(isinstance(add.outer(mx, mx), mmatrix))
        self.assertTrue(isinstance(hypot(mx, mx), mmatrix))
        self.assertTrue(isinstance(hypot(mx, x), mmatrix))

    def test_masked_binary_operations2(self):
        # Tests domained_masked_binary_operation
        (x, mx) = self.data
        xmx = masked_array(mx.data.__array__(), mask=mx.mask)
        self.assertTrue(isinstance(divide(mx, mx), mmatrix))
        self.assertTrue(isinstance(divide(mx, x), mmatrix))
        assert_equal(divide(mx, mx), divide(xmx, xmx))

    def test_attributepropagation(self):
        x = array(arange(5), mask=[0]+[1]*4)
        my = masked_array(subarray(x))
        ym = msubarray(x)
        #
        z = (my+1)
        self.assertTrue(isinstance(z, MaskedArray))
        self.assertTrue(not isinstance(z, MSubArray))
        self.assertTrue(isinstance(z._data, SubArray))
        assert_equal(z._data.info, {})
        #
        z = (ym+1)
        self.assertTrue(isinstance(z, MaskedArray))
        self.assertTrue(isinstance(z, MSubArray))
        self.assertTrue(isinstance(z._data, SubArray))
        self.assertTrue(z._data.info['added'] > 0)
        # Test that inplace methods from data get used (gh-4617)
        ym += 1
        self.assertTrue(isinstance(ym, MaskedArray))
        self.assertTrue(isinstance(ym, MSubArray))
        self.assertTrue(isinstance(ym._data, SubArray))
        self.assertTrue(ym._data.info['iadded'] > 0)
        #
        ym._set_mask([1, 0, 0, 0, 1])
        assert_equal(ym._mask, [1, 0, 0, 0, 1])
        ym._series._set_mask([0, 0, 0, 0, 1])
        assert_equal(ym._mask, [0, 0, 0, 0, 1])
        #
        xsub = subarray(x, info={'name':'x'})
        mxsub = masked_array(xsub)
        self.assertTrue(hasattr(mxsub, 'info'))
        assert_equal(mxsub.info, xsub.info)

    def test_subclasspreservation(self):
        # Checks that masked_array(...,subok=True) preserves the class.
        x = np.arange(5)
        m = [0, 0, 1, 0, 0]
        xinfo = [(i, j) for (i, j) in zip(x, m)]
        xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
        #
        mxsub = masked_array(xsub, subok=False)
        self.assertTrue(not isinstance(mxsub, MSubArray))
        self.assertTrue(isinstance(mxsub, MaskedArray))
        assert_equal(mxsub._mask, m)
        #
        mxsub = asarray(xsub)
        self.assertTrue(not isinstance(mxsub, MSubArray))
        self.assertTrue(isinstance(mxsub, MaskedArray))
        assert_equal(mxsub._mask, m)
        #
        mxsub = masked_array(xsub, subok=True)
        self.assertTrue(isinstance(mxsub, MSubArray))
        assert_equal(mxsub.info, xsub.info)
        assert_equal(mxsub._mask, xsub._mask)
        #
        mxsub = asanyarray(xsub)
        self.assertTrue(isinstance(mxsub, MSubArray))
        assert_equal(mxsub.info, xsub.info)
        assert_equal(mxsub._mask, m)

    def test_subclass_items(self):
        """test that getter and setter go via baseclass"""
        x = np.arange(5)
        xcsub = ComplicatedSubArray(x)
        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
        # getter should  return a ComplicatedSubArray, even for single item
        # first check we wrote ComplicatedSubArray correctly
        self.assertTrue(isinstance(xcsub[1], ComplicatedSubArray))
        self.assertTrue(isinstance(xcsub[1,...], ComplicatedSubArray))
        self.assertTrue(isinstance(xcsub[1:4], ComplicatedSubArray))

        # now that it propagates inside the MaskedArray
        self.assertTrue(isinstance(mxcsub[1], ComplicatedSubArray))
        self.assertTrue(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
        self.assertTrue(mxcsub[0] is masked)
        self.assertTrue(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
        self.assertTrue(isinstance(mxcsub[1:4].data, ComplicatedSubArray))

        # also for flattened version (which goes via MaskedIterator)
        self.assertTrue(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
        self.assertTrue(mxcsub.flat[0] is masked)
        self.assertTrue(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))

        # setter should only work with ComplicatedSubArray input
        # first check we wrote ComplicatedSubArray correctly
        assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
        # now that it propagates inside the MaskedArray
        assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
        assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
        mxcsub[1] = xcsub[4]
        mxcsub[1:4] = xcsub[1:4]
        # also for flattened version (which goes via MaskedIterator)
        assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
        assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
        mxcsub.flat[1] = xcsub[4]
        mxcsub.flat[1:4] = xcsub[1:4]

    def test_subclass_nomask_items(self):
        x = np.arange(5)
        xcsub = ComplicatedSubArray(x)
        mxcsub_nomask = masked_array(xcsub)

        self.assertTrue(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
        self.assertTrue(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))

        self.assertTrue(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
        self.assertTrue(isinstance(mxcsub_nomask[0], ComplicatedSubArray))

    def test_subclass_repr(self):
        """test that repr uses the name of the subclass
        and 'array' for np.ndarray"""
        x = np.arange(5)
        mx = masked_array(x, mask=[True, False, True, False, False])
        self.assertTrue(repr(mx).startswith('masked_array'))
        xsub = SubArray(x)
        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
        self.assertTrue(repr(mxsub).startswith(
            'masked_{0}(data = [-- 1 -- 3 4]'.format(SubArray.__name__)))

    def test_subclass_str(self):
        """test str with subclass that has overridden str, setitem"""
        # first without override
        x = np.arange(5)
        xsub = SubArray(x)
        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
        self.assertTrue(str(mxsub) == '[-- 1 -- 3 4]')

        xcsub = ComplicatedSubArray(x)
        assert_raises(ValueError, xcsub.__setitem__, 0,
                      np.ma.core.masked_print_option)
        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
        self.assertTrue(str(mxcsub) == 'myprefix [-- 1 -- 3 4] mypostfix')

    def test_pure_subclass_info_preservation(self):
        # Test that ufuncs and methods conserve extra information consistently;
        # see gh-7122.
        arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
        arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
        diff1 = np.subtract(arr1, arr2)
        self.assertTrue('info' in diff1._optinfo)
        self.assertTrue(diff1._optinfo['info'] == 'test')
        diff2 = arr1 - arr2
        self.assertTrue('info' in diff2._optinfo)
        self.assertTrue(diff2._optinfo['info'] == 'test')


###############################################################################
if __name__ == '__main__':
    run_module_suite()

Zerion Mini Shell 1.0