ok
Direktori : /proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/ma/tests/ |
Current File : //proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/ma/tests/test_subclassing.py |
# pylint: disable-msg=W0611, W0612, W0511,R0201 """Tests suite for MaskedArray & subclassing. :author: Pierre Gerard-Marchant :contact: pierregm_at_uga_dot_edu :version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $ """ from __future__ import division, absolute_import, print_function import numpy as np from numpy.testing import TestCase, run_module_suite, assert_raises, dec from numpy.ma.testutils import assert_equal from numpy.ma.core import ( array, arange, masked, MaskedArray, masked_array, log, add, hypot, divide, asarray, asanyarray, nomask ) # from numpy.ma.core import ( class SubArray(np.ndarray): # Defines a generic np.ndarray subclass, that stores some metadata # in the dictionary `info`. def __new__(cls,arr,info={}): x = np.asanyarray(arr).view(cls) x.info = info.copy() return x def __array_finalize__(self, obj): if callable(getattr(super(SubArray, self), '__array_finalize__', None)): super(SubArray, self).__array_finalize__(obj) self.info = getattr(obj, 'info', {}).copy() return def __add__(self, other): result = super(SubArray, self).__add__(other) result.info['added'] = result.info.get('added', 0) + 1 return result def __iadd__(self, other): result = super(SubArray, self).__iadd__(other) result.info['iadded'] = result.info.get('iadded', 0) + 1 return result subarray = SubArray class SubMaskedArray(MaskedArray): """Pure subclass of MaskedArray, keeping some info on subclass.""" def __new__(cls, info=None, **kwargs): obj = super(SubMaskedArray, cls).__new__(cls, **kwargs) obj._optinfo['info'] = info return obj class MSubArray(SubArray, MaskedArray): def __new__(cls, data, info={}, mask=nomask): subarr = SubArray(data, info) _data = MaskedArray.__new__(cls, data=subarr, mask=mask) _data.info = subarr.info return _data def _get_series(self): _view = self.view(MaskedArray) _view._sharedmask = False return _view _series = property(fget=_get_series) msubarray = MSubArray class MMatrix(MaskedArray, np.matrix,): def __new__(cls, data, mask=nomask): mat = np.matrix(data) _data = MaskedArray.__new__(cls, data=mat, mask=mask) return _data def __array_finalize__(self, obj): np.matrix.__array_finalize__(self, obj) MaskedArray.__array_finalize__(self, obj) return def _get_series(self): _view = self.view(MaskedArray) _view._sharedmask = False return _view _series = property(fget=_get_series) mmatrix = MMatrix # Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing # setting to non-class values (and thus np.ma.core.masked_print_option) # and overrides __array_wrap__, updating the info dict, to check that this # doesn't get destroyed by MaskedArray._update_from. But this one also needs # its own iterator... class CSAIterator(object): """ Flat iterator object that uses its own setter/getter (works around ndarray.flat not propagating subclass setters/getters see https://github.com/numpy/numpy/issues/4564) roughly following MaskedIterator """ def __init__(self, a): self._original = a self._dataiter = a.view(np.ndarray).flat def __iter__(self): return self def __getitem__(self, indx): out = self._dataiter.__getitem__(indx) if not isinstance(out, np.ndarray): out = out.__array__() out = out.view(type(self._original)) return out def __setitem__(self, index, value): self._dataiter[index] = self._original._validate_input(value) def __next__(self): return next(self._dataiter).__array__().view(type(self._original)) next = __next__ class ComplicatedSubArray(SubArray): def __str__(self): return 'myprefix {0} mypostfix'.format(self.view(SubArray)) def __repr__(self): # Return a repr that does not start with 'name(' return '<{0} {1}>'.format(self.__class__.__name__, self) def _validate_input(self, value): if not isinstance(value, ComplicatedSubArray): raise ValueError("Can only set to MySubArray values") return value def __setitem__(self, item, value): # validation ensures direct assignment with ndarray or # masked_print_option will fail super(ComplicatedSubArray, self).__setitem__( item, self._validate_input(value)) def __getitem__(self, item): # ensure getter returns our own class also for scalars value = super(ComplicatedSubArray, self).__getitem__(item) if not isinstance(value, np.ndarray): # scalar value = value.__array__().view(ComplicatedSubArray) return value @property def flat(self): return CSAIterator(self) @flat.setter def flat(self, value): y = self.ravel() y[:] = value def __array_wrap__(self, obj, context=None): obj = super(ComplicatedSubArray, self).__array_wrap__(obj, context) if context is not None and context[0] is np.multiply: obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1 return obj class TestSubclassing(TestCase): # Test suite for masked subclasses of ndarray. def setUp(self): x = np.arange(5, dtype='float') mx = mmatrix(x, mask=[0, 1, 0, 0, 0]) self.data = (x, mx) def test_data_subclassing(self): # Tests whether the subclass is kept. x = np.arange(5) m = [0, 0, 1, 0, 0] xsub = SubArray(x) xmsub = masked_array(xsub, mask=m) self.assertTrue(isinstance(xmsub, MaskedArray)) assert_equal(xmsub._data, xsub) self.assertTrue(isinstance(xmsub._data, SubArray)) def test_maskedarray_subclassing(self): # Tests subclassing MaskedArray (x, mx) = self.data self.assertTrue(isinstance(mx._data, np.matrix)) def test_masked_unary_operations(self): # Tests masked_unary_operation (x, mx) = self.data with np.errstate(divide='ignore'): self.assertTrue(isinstance(log(mx), mmatrix)) assert_equal(log(x), np.log(x)) def test_masked_binary_operations(self): # Tests masked_binary_operation (x, mx) = self.data # Result should be a mmatrix self.assertTrue(isinstance(add(mx, mx), mmatrix)) self.assertTrue(isinstance(add(mx, x), mmatrix)) # Result should work assert_equal(add(mx, x), mx+x) self.assertTrue(isinstance(add(mx, mx)._data, np.matrix)) self.assertTrue(isinstance(add.outer(mx, mx), mmatrix)) self.assertTrue(isinstance(hypot(mx, mx), mmatrix)) self.assertTrue(isinstance(hypot(mx, x), mmatrix)) def test_masked_binary_operations2(self): # Tests domained_masked_binary_operation (x, mx) = self.data xmx = masked_array(mx.data.__array__(), mask=mx.mask) self.assertTrue(isinstance(divide(mx, mx), mmatrix)) self.assertTrue(isinstance(divide(mx, x), mmatrix)) assert_equal(divide(mx, mx), divide(xmx, xmx)) def test_attributepropagation(self): x = array(arange(5), mask=[0]+[1]*4) my = masked_array(subarray(x)) ym = msubarray(x) # z = (my+1) self.assertTrue(isinstance(z, MaskedArray)) self.assertTrue(not isinstance(z, MSubArray)) self.assertTrue(isinstance(z._data, SubArray)) assert_equal(z._data.info, {}) # z = (ym+1) self.assertTrue(isinstance(z, MaskedArray)) self.assertTrue(isinstance(z, MSubArray)) self.assertTrue(isinstance(z._data, SubArray)) self.assertTrue(z._data.info['added'] > 0) # Test that inplace methods from data get used (gh-4617) ym += 1 self.assertTrue(isinstance(ym, MaskedArray)) self.assertTrue(isinstance(ym, MSubArray)) self.assertTrue(isinstance(ym._data, SubArray)) self.assertTrue(ym._data.info['iadded'] > 0) # ym._set_mask([1, 0, 0, 0, 1]) assert_equal(ym._mask, [1, 0, 0, 0, 1]) ym._series._set_mask([0, 0, 0, 0, 1]) assert_equal(ym._mask, [0, 0, 0, 0, 1]) # xsub = subarray(x, info={'name':'x'}) mxsub = masked_array(xsub) self.assertTrue(hasattr(mxsub, 'info')) assert_equal(mxsub.info, xsub.info) def test_subclasspreservation(self): # Checks that masked_array(...,subok=True) preserves the class. x = np.arange(5) m = [0, 0, 1, 0, 0] xinfo = [(i, j) for (i, j) in zip(x, m)] xsub = MSubArray(x, mask=m, info={'xsub':xinfo}) # mxsub = masked_array(xsub, subok=False) self.assertTrue(not isinstance(mxsub, MSubArray)) self.assertTrue(isinstance(mxsub, MaskedArray)) assert_equal(mxsub._mask, m) # mxsub = asarray(xsub) self.assertTrue(not isinstance(mxsub, MSubArray)) self.assertTrue(isinstance(mxsub, MaskedArray)) assert_equal(mxsub._mask, m) # mxsub = masked_array(xsub, subok=True) self.assertTrue(isinstance(mxsub, MSubArray)) assert_equal(mxsub.info, xsub.info) assert_equal(mxsub._mask, xsub._mask) # mxsub = asanyarray(xsub) self.assertTrue(isinstance(mxsub, MSubArray)) assert_equal(mxsub.info, xsub.info) assert_equal(mxsub._mask, m) def test_subclass_items(self): """test that getter and setter go via baseclass""" x = np.arange(5) xcsub = ComplicatedSubArray(x) mxcsub = masked_array(xcsub, mask=[True, False, True, False, False]) # getter should return a ComplicatedSubArray, even for single item # first check we wrote ComplicatedSubArray correctly self.assertTrue(isinstance(xcsub[1], ComplicatedSubArray)) self.assertTrue(isinstance(xcsub[1,...], ComplicatedSubArray)) self.assertTrue(isinstance(xcsub[1:4], ComplicatedSubArray)) # now that it propagates inside the MaskedArray self.assertTrue(isinstance(mxcsub[1], ComplicatedSubArray)) self.assertTrue(isinstance(mxcsub[1,...].data, ComplicatedSubArray)) self.assertTrue(mxcsub[0] is masked) self.assertTrue(isinstance(mxcsub[0,...].data, ComplicatedSubArray)) self.assertTrue(isinstance(mxcsub[1:4].data, ComplicatedSubArray)) # also for flattened version (which goes via MaskedIterator) self.assertTrue(isinstance(mxcsub.flat[1].data, ComplicatedSubArray)) self.assertTrue(mxcsub.flat[0] is masked) self.assertTrue(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray)) # setter should only work with ComplicatedSubArray input # first check we wrote ComplicatedSubArray correctly assert_raises(ValueError, xcsub.__setitem__, 1, x[4]) # now that it propagates inside the MaskedArray assert_raises(ValueError, mxcsub.__setitem__, 1, x[4]) assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4]) mxcsub[1] = xcsub[4] mxcsub[1:4] = xcsub[1:4] # also for flattened version (which goes via MaskedIterator) assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4]) assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4]) mxcsub.flat[1] = xcsub[4] mxcsub.flat[1:4] = xcsub[1:4] def test_subclass_nomask_items(self): x = np.arange(5) xcsub = ComplicatedSubArray(x) mxcsub_nomask = masked_array(xcsub) self.assertTrue(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray)) self.assertTrue(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray)) self.assertTrue(isinstance(mxcsub_nomask[1], ComplicatedSubArray)) self.assertTrue(isinstance(mxcsub_nomask[0], ComplicatedSubArray)) def test_subclass_repr(self): """test that repr uses the name of the subclass and 'array' for np.ndarray""" x = np.arange(5) mx = masked_array(x, mask=[True, False, True, False, False]) self.assertTrue(repr(mx).startswith('masked_array')) xsub = SubArray(x) mxsub = masked_array(xsub, mask=[True, False, True, False, False]) self.assertTrue(repr(mxsub).startswith( 'masked_{0}(data = [-- 1 -- 3 4]'.format(SubArray.__name__))) def test_subclass_str(self): """test str with subclass that has overridden str, setitem""" # first without override x = np.arange(5) xsub = SubArray(x) mxsub = masked_array(xsub, mask=[True, False, True, False, False]) self.assertTrue(str(mxsub) == '[-- 1 -- 3 4]') xcsub = ComplicatedSubArray(x) assert_raises(ValueError, xcsub.__setitem__, 0, np.ma.core.masked_print_option) mxcsub = masked_array(xcsub, mask=[True, False, True, False, False]) self.assertTrue(str(mxcsub) == 'myprefix [-- 1 -- 3 4] mypostfix') def test_pure_subclass_info_preservation(self): # Test that ufuncs and methods conserve extra information consistently; # see gh-7122. arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6]) arr2 = SubMaskedArray(data=[0,1,2,3,4,5]) diff1 = np.subtract(arr1, arr2) self.assertTrue('info' in diff1._optinfo) self.assertTrue(diff1._optinfo['info'] == 'test') diff2 = arr1 - arr2 self.assertTrue('info' in diff2._optinfo) self.assertTrue(diff2._optinfo['info'] == 'test') ############################################################################### if __name__ == '__main__': run_module_suite()