ok
Direktori : /proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/guppy/etc/ |
Current File : //proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/guppy/etc/KnuthBendix.py |
""" An implementation of the Knuth-Bendix algorithm, as described in (1), p. 143. For determining if two paths in a category are equal. The algorithm as given here, takes a set of equations in the form of a sequence: E = [(a, b), (c, d) ...] where a, b, c, d are 'paths'. Paths are given as strings, for example: E = [ ('fhk', 'gh'), ('m', 'kkm') ] means that the path 'fhk' equals 'gh' and 'm' equals 'kkm'. Each arrow in the path is here a single character. If longer arrow names are required, a delimiter string can be specified as in: kb(E, delim='.') The paths must then be given by the delimiter between each arrow; E = [ ('h_arrow.g_arrow', 'g_arrow.k_arrow') ... ] The function kb(E) returns an object, say A, which is o callable: A(a, b)->boolean determines if two paths given by a, b are equal. o has a method A.reduce(a)->pathstring, which reduces a path to normal form. An optional parameter to kb, max_iterations, determines the maximum number of iterations the algorithm should try making the reduction system 'confluent'. The algorithm is not guaranteed to terminate with a confluent system in a finite number of iterations, so if the number of iterations needed exceeds max_iterations an exception (ValueError) will be raised. The default is 100. References (1) @book{walters91categories, title={Categories and Computer Science}, author={R. F. C. Walters}, publisher={Cambridge University Press}, location={Cambridge}, year=1991} (2) @book{grimaldi94discrete, author="Ralph P. Grimaldi". title="Discrete and Combinatorial Mathematics: An Applied Introduction", publisher="Addison-Wesley", location="Readin, Massachusetts", year=1994 } """ import functools class KnuthBendix: def __init__(self, E, delim='', max_iterations=100): self.reductions = [] self.delim = delim for a, b in E: if delim: a = self.wrap_delim(a) b = self.wrap_delim(b) if self.gt(b, a): a, b = b, a self.reductions.append((a, b)) self.make_confluent(max_iterations) self.sort() def __call__(self, x, y): return self.reduce(x) == self.reduce(y) def gt(self, a, b): delim = self.delim if delim: la = len(a) lb = len(b) else: la = a.count(delim) lb = b.count(delim) if la > lb: return 1 if la < lb: return 0 return a > b def make_confluent(self, max_iterations): def add_reduction(p, q): if p != q: if self.gt(p, q): self.reductions.append((p, q)) else: self.reductions.append((q, p)) self.confluent = 0 reds_tested = {} for i in range(max_iterations): self.confluent = 1 reds = list(self.reductions) for u1, v1 in reds: for u2, v2 in reds: red = (u1, u2, u2, v2) if red in reds_tested: continue reds_tested[red] = 1 if u2 in u1: p = self.freduce(v1) i = u1.index(u2) while i >= 0: uuu = u1[:i]+v2+u1[i+len(u2):] q = self.freduce(uuu) add_reduction(p, q) i = u1.find(u2, i+1) lu1 = len(u1) for i in range(1, lu1-len(self.delim)): if u2[:lu1-i] == u1[i:]: p = self.freduce(v1 + u2[lu1-i:]) q = self.freduce(u1[:i] + v2) add_reduction(p, q) assert ('', '') not in reds # Remove redundant reductions newr = [] nullred = (self.delim, self.delim) for i, uv in enumerate(self.reductions): u, v = uv self.reductions[i] = nullred ru = self.freduce(u) rv = self.freduce(v) if ru != v and ru != rv: urv = (u, rv) newr.append(urv) self.reductions[i] = urv else: pass if len(newr) != self.reductions: assert ('', '') not in newr self.reductions = newr assert ('', '') not in self.reductions if self.confluent: break else: raise ValueError("""\ KnuthBendix.make_confluent did not terminate in %d iterations. Check your equations or specify an higher max_iterations value.' """ % max_iterations) def freduce(self, p): # This (internal) variant of reduce: # Uses the internal representaion: # Assumes p is .surrounded. by the delimiter # and returns the reduced value .surrounded. by it. # This is primarily for internal use by make_confluent while 1: q = p for uv in self.reductions: p = p.replace(*uv) if q == p: break return p def reduce(self, p): # This (external) variant of reduce: # will add delim if not .surrounded. by delim # but the return value will not be surrounded by it. if self.delim: p = self.wrap_delim(p) p = self.freduce(p) if self.delim: p = p.strip(self.delim) return p def sort(self, reds=None): if reds is None: reds = self.reductions def cmp(xxx_todo_changeme, xxx_todo_changeme1): (x, _) = xxx_todo_changeme (y, __) = xxx_todo_changeme1 if self.gt(x, y): return 1 if x == y: return 0 return -1 reds.sort(key=functools.cmp_to_key(cmp)) def pp(self): printreds(self.reductions) def wrap_delim(self, p): if not p.startswith(self.delim): p = self.delim + p if not p.endswith(self.delim): p = p + self.delim return p def printreds(reds): for i, uv in enumerate(reds): print('%s\t' % (uv,), end=' ') if (i + 1) % 4 == 0: print() if (i + 1) % 4 != 0: print() def kb(E, *a, **k): return KnuthBendix(E, *a, **k) class _GLUECLAMP_: pass def test2(): # # The group of complex numbers {1, -1, i, -i} under multiplication; # generators and table from Example 16.13 in (2). G = ['1', '-1', 'i', '-i'] E = [('1.i', 'i'), ('i.i', '-1'), ('i.i.i', '-i'), ('i.i.i.i', '1'), ] R = kb(E, delim='.') T = [['.']+G] + [[y]+[R.reduce('%s.%s' % (y, x)) for x in G] for y in G] assert T == [ ['.', '1', '-1', 'i', '-i'], ['1', '1', '-1', 'i', '-i'], ['-1', '-1', '1', '-i', 'i'], ['i', 'i', '-i', '-1', '1'], ['-i', '-i', 'i', '1', '-1']] return R def test(): E = [('.a.', '.b.')] a = kb(E, delim='.') assert a('.a.', '.b.') E = [('fhk', 'gh'), ('m', 'kkm')] a = kb(E) p = a.reduce('fffghkkkm') q = a.reduce('ffghkm') assert p == 'ffffhm' assert q == 'fffhm' assert not a(p, q) E = [('.a.', '.b.')] a = kb(E, delim='.') p = a.reduce('aa') assert p == 'aa' p = a.reduce('.bb.') assert p == 'bb' p = a.reduce('b') assert p == 'a' E = [('.f.h.k.', '.g.h.'), ('.m.', '.k.k.m.')] a = kb(E, delim='.') p = a.reduce('.f.f.f.g.h.k.k.k.m.') q = a.reduce('.f.f.g.h.k.m.') assert p, q == ('.f.f.f.f.h.m.', '.f.f.f.h.m.') assert p == 'f.f.f.f.h.m' assert q == 'f.f.f.h.m' E = [('.f.ff.fff.', '.ffff.ff.'), ('.fffff.', '.fff.fff.fffff.')] a = kb(E, delim='.') p = a.reduce('.f.f.f.ffff.ff.fff.fff.fff.fffff.') q = a.reduce('.f.f.ffff.ff.fff.fffff.') assert p == 'f.f.f.f.ff.fffff' assert q == 'f.f.f.ff.fffff' def test3(): # From 9.3 in 251 E = [('Hcc', 'H'), ('aab', 'ba'), ('aac', 'ca'), ('cccb', 'abc'), ('caca', 'b')] a = kb(E) canon = [ ('Hb', 'Ha'), ('Haa', 'Ha'), ('Hab', 'Ha'), ('Hca', 'Hac'), ('Hcb', 'Hac'), ('Hcc', 'H'), ('aab', 'ba'), ('aac', 'ca'), ('abb', 'bb'), ('abc', 'cb'), ('acb', 'cb'), ('baa', 'ba'), ('bab', 'bb'), ('bac', 'cb'), ('bba', 'bb'), ('bca', 'cb'), ('bcb', 'bbc'), ('cab', 'cb'), ('cba', 'cb'), ('cbb', 'bbc'), ('cbc', 'bb'), ('ccb', 'bb'), ('Haca', 'Hac'), ('Hacc', 'Ha'), ('bbbb', 'bb'), ('bbbc', 'cb'), ('bbcc', 'bbb'), ('bcca', 'bb'), ('caca', 'b'), ('ccaa', 'ba'), ('ccca', 'cb'), ('cacca', 'cb') ] a.canon = canon return a