ok
Direktori : /proc/self/root/proc/self/root/opt/alt/python38/lib/python3.8/site-packages/babel/ |
Current File : //proc/self/root/proc/self/root/opt/alt/python38/lib/python3.8/site-packages/babel/plural.py |
# -*- coding: utf-8 -*- """ babel.numbers ~~~~~~~~~~~~~ CLDR Plural support. See UTS #35. :copyright: (c) 2013-2021 by the Babel Team. :license: BSD, see LICENSE for more details. """ import re from babel._compat import decimal _plural_tags = ('zero', 'one', 'two', 'few', 'many', 'other') _fallback_tag = 'other' def extract_operands(source): """Extract operands from a decimal, a float or an int, according to `CLDR rules`_. The result is a 6-tuple (n, i, v, w, f, t), where those symbols are as follows: ====== =============================================================== Symbol Value ------ --------------------------------------------------------------- n absolute value of the source number (integer and decimals). i integer digits of n. v number of visible fraction digits in n, with trailing zeros. w number of visible fraction digits in n, without trailing zeros. f visible fractional digits in n, with trailing zeros. t visible fractional digits in n, without trailing zeros. ====== =============================================================== .. _`CLDR rules`: https://www.unicode.org/reports/tr35/tr35-33/tr35-numbers.html#Operands :param source: A real number :type source: int|float|decimal.Decimal :return: A n-i-v-w-f-t tuple :rtype: tuple[decimal.Decimal, int, int, int, int, int] """ n = abs(source) i = int(n) if isinstance(n, float): if i == n: n = i else: # Cast the `float` to a number via the string representation. # This is required for Python 2.6 anyway (it will straight out fail to # do the conversion otherwise), and it's highly unlikely that the user # actually wants the lossless conversion behavior (quoting the Python # documentation): # > If value is a float, the binary floating point value is losslessly # > converted to its exact decimal equivalent. # > This conversion can often require 53 or more digits of precision. # Should the user want that behavior, they can simply pass in a pre- # converted `Decimal` instance of desired accuracy. n = decimal.Decimal(str(n)) if isinstance(n, decimal.Decimal): dec_tuple = n.as_tuple() exp = dec_tuple.exponent fraction_digits = dec_tuple.digits[exp:] if exp < 0 else () trailing = ''.join(str(d) for d in fraction_digits) no_trailing = trailing.rstrip('0') v = len(trailing) w = len(no_trailing) f = int(trailing or 0) t = int(no_trailing or 0) else: v = w = f = t = 0 return n, i, v, w, f, t class PluralRule(object): """Represents a set of language pluralization rules. The constructor accepts a list of (tag, expr) tuples or a dict of `CLDR rules`_. The resulting object is callable and accepts one parameter with a positive or negative number (both integer and float) for the number that indicates the plural form for a string and returns the tag for the format: >>> rule = PluralRule({'one': 'n is 1'}) >>> rule(1) 'one' >>> rule(2) 'other' Currently the CLDR defines these tags: zero, one, two, few, many and other where other is an implicit default. Rules should be mutually exclusive; for a given numeric value, only one rule should apply (i.e. the condition should only be true for one of the plural rule elements. .. _`CLDR rules`: https://www.unicode.org/reports/tr35/tr35-33/tr35-numbers.html#Language_Plural_Rules """ __slots__ = ('abstract', '_func') def __init__(self, rules): """Initialize the rule instance. :param rules: a list of ``(tag, expr)``) tuples with the rules conforming to UTS #35 or a dict with the tags as keys and expressions as values. :raise RuleError: if the expression is malformed """ if isinstance(rules, dict): rules = rules.items() found = set() self.abstract = [] for key, expr in sorted(list(rules)): if key not in _plural_tags: raise ValueError('unknown tag %r' % key) elif key in found: raise ValueError('tag %r defined twice' % key) found.add(key) ast = _Parser(expr).ast if ast: self.abstract.append((key, ast)) def __repr__(self): rules = self.rules return '<%s %r>' % ( type(self).__name__, ', '.join(['%s: %s' % (tag, rules[tag]) for tag in _plural_tags if tag in rules]) ) @classmethod def parse(cls, rules): """Create a `PluralRule` instance for the given rules. If the rules are a `PluralRule` object, that object is returned. :param rules: the rules as list or dict, or a `PluralRule` object :raise RuleError: if the expression is malformed """ if isinstance(rules, cls): return rules return cls(rules) @property def rules(self): """The `PluralRule` as a dict of unicode plural rules. >>> rule = PluralRule({'one': 'n is 1'}) >>> rule.rules {'one': 'n is 1'} """ _compile = _UnicodeCompiler().compile return dict([(tag, _compile(ast)) for tag, ast in self.abstract]) tags = property(lambda x: frozenset([i[0] for i in x.abstract]), doc=""" A set of explicitly defined tags in this rule. The implicit default ``'other'`` rules is not part of this set unless there is an explicit rule for it.""") def __getstate__(self): return self.abstract def __setstate__(self, abstract): self.abstract = abstract def __call__(self, n): if not hasattr(self, '_func'): self._func = to_python(self) return self._func(n) def to_javascript(rule): """Convert a list/dict of rules or a `PluralRule` object into a JavaScript function. This function depends on no external library: >>> to_javascript({'one': 'n is 1'}) "(function(n) { return (n == 1) ? 'one' : 'other'; })" Implementation detail: The function generated will probably evaluate expressions involved into range operations multiple times. This has the advantage that external helper functions are not required and is not a big performance hit for these simple calculations. :param rule: the rules as list or dict, or a `PluralRule` object :raise RuleError: if the expression is malformed """ to_js = _JavaScriptCompiler().compile result = ['(function(n) { return '] for tag, ast in PluralRule.parse(rule).abstract: result.append('%s ? %r : ' % (to_js(ast), tag)) result.append('%r; })' % _fallback_tag) return ''.join(result) def to_python(rule): """Convert a list/dict of rules or a `PluralRule` object into a regular Python function. This is useful in situations where you need a real function and don't are about the actual rule object: >>> func = to_python({'one': 'n is 1', 'few': 'n in 2..4'}) >>> func(1) 'one' >>> func(3) 'few' >>> func = to_python({'one': 'n in 1,11', 'few': 'n in 3..10,13..19'}) >>> func(11) 'one' >>> func(15) 'few' :param rule: the rules as list or dict, or a `PluralRule` object :raise RuleError: if the expression is malformed """ namespace = { 'IN': in_range_list, 'WITHIN': within_range_list, 'MOD': cldr_modulo, 'extract_operands': extract_operands, } to_python_func = _PythonCompiler().compile result = [ 'def evaluate(n):', ' n, i, v, w, f, t = extract_operands(n)', ] for tag, ast in PluralRule.parse(rule).abstract: # the str() call is to coerce the tag to the native string. It's # a limited ascii restricted set of tags anyways so that is fine. result.append(' if (%s): return %r' % (to_python_func(ast), str(tag))) result.append(' return %r' % _fallback_tag) code = compile('\n'.join(result), '<rule>', 'exec') eval(code, namespace) return namespace['evaluate'] def to_gettext(rule): """The plural rule as gettext expression. The gettext expression is technically limited to integers and returns indices rather than tags. >>> to_gettext({'one': 'n is 1', 'two': 'n is 2'}) 'nplurals=3; plural=((n == 1) ? 0 : (n == 2) ? 1 : 2)' :param rule: the rules as list or dict, or a `PluralRule` object :raise RuleError: if the expression is malformed """ rule = PluralRule.parse(rule) used_tags = rule.tags | {_fallback_tag} _compile = _GettextCompiler().compile _get_index = [tag for tag in _plural_tags if tag in used_tags].index result = ['nplurals=%d; plural=(' % len(used_tags)] for tag, ast in rule.abstract: result.append('%s ? %d : ' % (_compile(ast), _get_index(tag))) result.append('%d)' % _get_index(_fallback_tag)) return ''.join(result) def in_range_list(num, range_list): """Integer range list test. This is the callback for the "in" operator of the UTS #35 pluralization rule language: >>> in_range_list(1, [(1, 3)]) True >>> in_range_list(3, [(1, 3)]) True >>> in_range_list(3, [(1, 3), (5, 8)]) True >>> in_range_list(1.2, [(1, 4)]) False >>> in_range_list(10, [(1, 4)]) False >>> in_range_list(10, [(1, 4), (6, 8)]) False """ return num == int(num) and within_range_list(num, range_list) def within_range_list(num, range_list): """Float range test. This is the callback for the "within" operator of the UTS #35 pluralization rule language: >>> within_range_list(1, [(1, 3)]) True >>> within_range_list(1.0, [(1, 3)]) True >>> within_range_list(1.2, [(1, 4)]) True >>> within_range_list(8.8, [(1, 4), (7, 15)]) True >>> within_range_list(10, [(1, 4)]) False >>> within_range_list(10.5, [(1, 4), (20, 30)]) False """ return any(num >= min_ and num <= max_ for min_, max_ in range_list) def cldr_modulo(a, b): """Javaish modulo. This modulo operator returns the value with the sign of the dividend rather than the divisor like Python does: >>> cldr_modulo(-3, 5) -3 >>> cldr_modulo(-3, -5) -3 >>> cldr_modulo(3, 5) 3 """ reverse = 0 if a < 0: a *= -1 reverse = 1 if b < 0: b *= -1 rv = a % b if reverse: rv *= -1 return rv class RuleError(Exception): """Raised if a rule is malformed.""" _VARS = 'nivwft' _RULES = [ (None, re.compile(r'\s+', re.UNICODE)), ('word', re.compile(r'\b(and|or|is|(?:with)?in|not|mod|[{0}])\b' .format(_VARS))), ('value', re.compile(r'\d+')), ('symbol', re.compile(r'%|,|!=|=')), ('ellipsis', re.compile(r'\.{2,3}|\u2026', re.UNICODE)) # U+2026: ELLIPSIS ] def tokenize_rule(s): s = s.split('@')[0] result = [] pos = 0 end = len(s) while pos < end: for tok, rule in _RULES: match = rule.match(s, pos) if match is not None: pos = match.end() if tok: result.append((tok, match.group())) break else: raise RuleError('malformed CLDR pluralization rule. ' 'Got unexpected %r' % s[pos]) return result[::-1] def test_next_token(tokens, type_, value=None): return tokens and tokens[-1][0] == type_ and \ (value is None or tokens[-1][1] == value) def skip_token(tokens, type_, value=None): if test_next_token(tokens, type_, value): return tokens.pop() def value_node(value): return 'value', (value, ) def ident_node(name): return name, () def range_list_node(range_list): return 'range_list', range_list def negate(rv): return 'not', (rv,) class _Parser(object): """Internal parser. This class can translate a single rule into an abstract tree of tuples. It implements the following grammar:: condition = and_condition ('or' and_condition)* ('@integer' samples)? ('@decimal' samples)? and_condition = relation ('and' relation)* relation = is_relation | in_relation | within_relation is_relation = expr 'is' ('not')? value in_relation = expr (('not')? 'in' | '=' | '!=') range_list within_relation = expr ('not')? 'within' range_list expr = operand (('mod' | '%') value)? operand = 'n' | 'i' | 'f' | 't' | 'v' | 'w' range_list = (range | value) (',' range_list)* value = digit+ digit = 0|1|2|3|4|5|6|7|8|9 range = value'..'value samples = sampleRange (',' sampleRange)* (',' ('…'|'...'))? sampleRange = decimalValue '~' decimalValue decimalValue = value ('.' value)? - Whitespace can occur between or around any of the above tokens. - Rules should be mutually exclusive; for a given numeric value, only one rule should apply (i.e. the condition should only be true for one of the plural rule elements). - The in and within relations can take comma-separated lists, such as: 'n in 3,5,7..15'. - Samples are ignored. The translator parses the expression on instanciation into an attribute called `ast`. """ def __init__(self, string): self.tokens = tokenize_rule(string) if not self.tokens: # If the pattern is only samples, it's entirely possible # no stream of tokens whatsoever is generated. self.ast = None return self.ast = self.condition() if self.tokens: raise RuleError('Expected end of rule, got %r' % self.tokens[-1][1]) def expect(self, type_, value=None, term=None): token = skip_token(self.tokens, type_, value) if token is not None: return token if term is None: term = repr(value is None and type_ or value) if not self.tokens: raise RuleError('expected %s but end of rule reached' % term) raise RuleError('expected %s but got %r' % (term, self.tokens[-1][1])) def condition(self): op = self.and_condition() while skip_token(self.tokens, 'word', 'or'): op = 'or', (op, self.and_condition()) return op def and_condition(self): op = self.relation() while skip_token(self.tokens, 'word', 'and'): op = 'and', (op, self.relation()) return op def relation(self): left = self.expr() if skip_token(self.tokens, 'word', 'is'): return skip_token(self.tokens, 'word', 'not') and 'isnot' or 'is', \ (left, self.value()) negated = skip_token(self.tokens, 'word', 'not') method = 'in' if skip_token(self.tokens, 'word', 'within'): method = 'within' else: if not skip_token(self.tokens, 'word', 'in'): if negated: raise RuleError('Cannot negate operator based rules.') return self.newfangled_relation(left) rv = 'relation', (method, left, self.range_list()) return negate(rv) if negated else rv def newfangled_relation(self, left): if skip_token(self.tokens, 'symbol', '='): negated = False elif skip_token(self.tokens, 'symbol', '!='): negated = True else: raise RuleError('Expected "=" or "!=" or legacy relation') rv = 'relation', ('in', left, self.range_list()) return negate(rv) if negated else rv def range_or_value(self): left = self.value() if skip_token(self.tokens, 'ellipsis'): return left, self.value() else: return left, left def range_list(self): range_list = [self.range_or_value()] while skip_token(self.tokens, 'symbol', ','): range_list.append(self.range_or_value()) return range_list_node(range_list) def expr(self): word = skip_token(self.tokens, 'word') if word is None or word[1] not in _VARS: raise RuleError('Expected identifier variable') name = word[1] if skip_token(self.tokens, 'word', 'mod'): return 'mod', ((name, ()), self.value()) elif skip_token(self.tokens, 'symbol', '%'): return 'mod', ((name, ()), self.value()) return ident_node(name) def value(self): return value_node(int(self.expect('value')[1])) def _binary_compiler(tmpl): """Compiler factory for the `_Compiler`.""" return lambda self, l, r: tmpl % (self.compile(l), self.compile(r)) def _unary_compiler(tmpl): """Compiler factory for the `_Compiler`.""" return lambda self, x: tmpl % self.compile(x) compile_zero = lambda x: '0' class _Compiler(object): """The compilers are able to transform the expressions into multiple output formats. """ def compile(self, arg): op, args = arg return getattr(self, 'compile_' + op)(*args) compile_n = lambda x: 'n' compile_i = lambda x: 'i' compile_v = lambda x: 'v' compile_w = lambda x: 'w' compile_f = lambda x: 'f' compile_t = lambda x: 't' compile_value = lambda x, v: str(v) compile_and = _binary_compiler('(%s && %s)') compile_or = _binary_compiler('(%s || %s)') compile_not = _unary_compiler('(!%s)') compile_mod = _binary_compiler('(%s %% %s)') compile_is = _binary_compiler('(%s == %s)') compile_isnot = _binary_compiler('(%s != %s)') def compile_relation(self, method, expr, range_list): raise NotImplementedError() class _PythonCompiler(_Compiler): """Compiles an expression to Python.""" compile_and = _binary_compiler('(%s and %s)') compile_or = _binary_compiler('(%s or %s)') compile_not = _unary_compiler('(not %s)') compile_mod = _binary_compiler('MOD(%s, %s)') def compile_relation(self, method, expr, range_list): compile_range_list = '[%s]' % ','.join( ['(%s, %s)' % tuple(map(self.compile, range_)) for range_ in range_list[1]]) return '%s(%s, %s)' % (method.upper(), self.compile(expr), compile_range_list) class _GettextCompiler(_Compiler): """Compile into a gettext plural expression.""" compile_i = _Compiler.compile_n compile_v = compile_zero compile_w = compile_zero compile_f = compile_zero compile_t = compile_zero def compile_relation(self, method, expr, range_list): rv = [] expr = self.compile(expr) for item in range_list[1]: if item[0] == item[1]: rv.append('(%s == %s)' % ( expr, self.compile(item[0]) )) else: min, max = map(self.compile, item) rv.append('(%s >= %s && %s <= %s)' % ( expr, min, expr, max )) return '(%s)' % ' || '.join(rv) class _JavaScriptCompiler(_GettextCompiler): """Compiles the expression to plain of JavaScript.""" # XXX: presently javascript does not support any of the # fraction support and basically only deals with integers. compile_i = lambda x: 'parseInt(n, 10)' compile_v = compile_zero compile_w = compile_zero compile_f = compile_zero compile_t = compile_zero def compile_relation(self, method, expr, range_list): code = _GettextCompiler.compile_relation( self, method, expr, range_list) if method == 'in': expr = self.compile(expr) code = '(parseInt(%s, 10) == %s && %s)' % (expr, expr, code) return code class _UnicodeCompiler(_Compiler): """Returns a unicode pluralization rule again.""" # XXX: this currently spits out the old syntax instead of the new # one. We can change that, but it will break a whole bunch of stuff # for users I suppose. compile_is = _binary_compiler('%s is %s') compile_isnot = _binary_compiler('%s is not %s') compile_and = _binary_compiler('%s and %s') compile_or = _binary_compiler('%s or %s') compile_mod = _binary_compiler('%s mod %s') def compile_not(self, relation): return self.compile_relation(negated=True, *relation[1]) def compile_relation(self, method, expr, range_list, negated=False): ranges = [] for item in range_list[1]: if item[0] == item[1]: ranges.append(self.compile(item[0])) else: ranges.append('%s..%s' % tuple(map(self.compile, item))) return '%s%s %s %s' % ( self.compile(expr), negated and ' not' or '', method, ','.join(ranges) )