ok
Direktori : /usr/lib/python2.7/site-packages/enum/ |
Current File : //usr/lib/python2.7/site-packages/enum/enum.py |
"""Python Enumerations""" import sys as _sys __all__ = ['Enum', 'IntEnum', 'unique'] version = 1, 0, 4 pyver = float('%s.%s' % _sys.version_info[:2]) try: any except NameError: def any(iterable): for element in iterable: if element: return True return False try: from collections import OrderedDict except ImportError: OrderedDict = None try: basestring except NameError: # In Python 2 basestring is the ancestor of both str and unicode # in Python 3 it's just str, but was missing in 3.1 basestring = str try: unicode except NameError: # In Python 3 unicode no longer exists (it's just str) unicode = str class _RouteClassAttributeToGetattr(object): """Route attribute access on a class to __getattr__. This is a descriptor, used to define attributes that act differently when accessed through an instance and through a class. Instance access remains normal, but access to an attribute through a class will be routed to the class's __getattr__ method; this is done by raising AttributeError. """ def __init__(self, fget=None): self.fget = fget def __get__(self, instance, ownerclass=None): if instance is None: raise AttributeError() return self.fget(instance) def __set__(self, instance, value): raise AttributeError("can't set attribute") def __delete__(self, instance): raise AttributeError("can't delete attribute") def _is_descriptor(obj): """Returns True if obj is a descriptor, False otherwise.""" return ( hasattr(obj, '__get__') or hasattr(obj, '__set__') or hasattr(obj, '__delete__')) def _is_dunder(name): """Returns True if a __dunder__ name, False otherwise.""" return (name[:2] == name[-2:] == '__' and name[2:3] != '_' and name[-3:-2] != '_' and len(name) > 4) def _is_sunder(name): """Returns True if a _sunder_ name, False otherwise.""" return (name[0] == name[-1] == '_' and name[1:2] != '_' and name[-2:-1] != '_' and len(name) > 2) def _make_class_unpicklable(cls): """Make the given class un-picklable.""" def _break_on_call_reduce(self, protocol=None): raise TypeError('%r cannot be pickled' % self) cls.__reduce_ex__ = _break_on_call_reduce cls.__module__ = '<unknown>' class _EnumDict(dict): """Track enum member order and ensure member names are not reused. EnumMeta will use the names found in self._member_names as the enumeration member names. """ def __init__(self): super(_EnumDict, self).__init__() self._member_names = [] def __setitem__(self, key, value): """Changes anything not dundered or not a descriptor. If a descriptor is added with the same name as an enum member, the name is removed from _member_names (this may leave a hole in the numerical sequence of values). If an enum member name is used twice, an error is raised; duplicate values are not checked for. Single underscore (sunder) names are reserved. Note: in 3.x __order__ is simply discarded as a not necessary piece leftover from 2.x """ if pyver >= 3.0 and key == '__order__': return if _is_sunder(key): raise ValueError('_names_ are reserved for future Enum use') elif _is_dunder(key): pass elif key in self._member_names: # descriptor overwriting an enum? raise TypeError('Attempted to reuse key: %r' % key) elif not _is_descriptor(value): if key in self: # enum overwriting a descriptor? raise TypeError('Key already defined as: %r' % self[key]) self._member_names.append(key) super(_EnumDict, self).__setitem__(key, value) # Dummy value for Enum as EnumMeta explicity checks for it, but of course until # EnumMeta finishes running the first time the Enum class doesn't exist. This # is also why there are checks in EnumMeta like `if Enum is not None` Enum = None class EnumMeta(type): """Metaclass for Enum""" @classmethod def __prepare__(metacls, cls, bases): return _EnumDict() def __new__(metacls, cls, bases, classdict): # an Enum class is final once enumeration items have been defined; it # cannot be mixed with other types (int, float, etc.) if it has an # inherited __new__ unless a new __new__ is defined (or the resulting # class will fail). if type(classdict) is dict: original_dict = classdict classdict = _EnumDict() for k, v in original_dict.items(): classdict[k] = v member_type, first_enum = metacls._get_mixins_(bases) __new__, save_new, use_args = metacls._find_new_(classdict, member_type, first_enum) # save enum items into separate mapping so they don't get baked into # the new class members = dict((k, classdict[k]) for k in classdict._member_names) for name in classdict._member_names: del classdict[name] # py2 support for definition order __order__ = classdict.get('__order__') if __order__ is None: if pyver < 3.0: try: __order__ = [name for (name, value) in sorted(members.items(), key=lambda item: item[1])] except TypeError: __order__ = [name for name in sorted(members.keys())] else: __order__ = classdict._member_names else: del classdict['__order__'] if pyver < 3.0: __order__ = __order__.replace(',', ' ').split() aliases = [name for name in members if name not in __order__] __order__ += aliases # check for illegal enum names (any others?) invalid_names = set(members) & set(['mro']) if invalid_names: raise ValueError('Invalid enum member name(s): %s' % ( ', '.join(invalid_names), )) # create our new Enum type enum_class = super(EnumMeta, metacls).__new__(metacls, cls, bases, classdict) enum_class._member_names_ = [] # names in random order if OrderedDict is not None: enum_class._member_map_ = OrderedDict() else: enum_class._member_map_ = {} # name->value map enum_class._member_type_ = member_type # Reverse value->name map for hashable values. enum_class._value2member_map_ = {} # instantiate them, checking for duplicates as we go # we instantiate first instead of checking for duplicates first in case # a custom __new__ is doing something funky with the values -- such as # auto-numbering ;) if __new__ is None: __new__ = enum_class.__new__ for member_name in __order__: value = members[member_name] if not isinstance(value, tuple): args = (value, ) else: args = value if member_type is tuple: # special case for tuple enums args = (args, ) # wrap it one more time if not use_args or not args: enum_member = __new__(enum_class) if not hasattr(enum_member, '_value_'): enum_member._value_ = value else: enum_member = __new__(enum_class, *args) if not hasattr(enum_member, '_value_'): enum_member._value_ = member_type(*args) value = enum_member._value_ enum_member._name_ = member_name enum_member.__objclass__ = enum_class enum_member.__init__(*args) # If another member with the same value was already defined, the # new member becomes an alias to the existing one. for name, canonical_member in enum_class._member_map_.items(): if canonical_member.value == enum_member._value_: enum_member = canonical_member break else: # Aliases don't appear in member names (only in __members__). enum_class._member_names_.append(member_name) enum_class._member_map_[member_name] = enum_member try: # This may fail if value is not hashable. We can't add the value # to the map, and by-value lookups for this value will be # linear. enum_class._value2member_map_[value] = enum_member except TypeError: pass # If a custom type is mixed into the Enum, and it does not know how # to pickle itself, pickle.dumps will succeed but pickle.loads will # fail. Rather than have the error show up later and possibly far # from the source, sabotage the pickle protocol for this class so # that pickle.dumps also fails. # # However, if the new class implements its own __reduce_ex__, do not # sabotage -- it's on them to make sure it works correctly. We use # __reduce_ex__ instead of any of the others as it is preferred by # pickle over __reduce__, and it handles all pickle protocols. unpicklable = False if '__reduce_ex__' not in classdict: if member_type is not object: methods = ('__getnewargs_ex__', '__getnewargs__', '__reduce_ex__', '__reduce__') if not any(m in member_type.__dict__ for m in methods): _make_class_unpicklable(enum_class) unpicklable = True # double check that repr and friends are not the mixin's or various # things break (such as pickle) for name in ('__repr__', '__str__', '__format__', '__reduce_ex__'): class_method = getattr(enum_class, name) obj_method = getattr(member_type, name, None) enum_method = getattr(first_enum, name, None) if name not in classdict and class_method is not enum_method: if name == '__reduce_ex__' and unpicklable: continue setattr(enum_class, name, enum_method) # method resolution and int's are not playing nice # Python's less than 2.6 use __cmp__ if pyver < 2.6: if issubclass(enum_class, int): setattr(enum_class, '__cmp__', getattr(int, '__cmp__')) elif pyver < 3.0: if issubclass(enum_class, int): for method in ( '__le__', '__lt__', '__gt__', '__ge__', '__eq__', '__ne__', '__hash__', ): setattr(enum_class, method, getattr(int, method)) # replace any other __new__ with our own (as long as Enum is not None, # anyway) -- again, this is to support pickle if Enum is not None: # if the user defined their own __new__, save it before it gets # clobbered in case they subclass later if save_new: setattr(enum_class, '__member_new__', enum_class.__dict__['__new__']) setattr(enum_class, '__new__', Enum.__dict__['__new__']) return enum_class def __call__(cls, value, names=None, module=None, type=None): """Either returns an existing member, or creates a new enum class. This method is used both when an enum class is given a value to match to an enumeration member (i.e. Color(3)) and for the functional API (i.e. Color = Enum('Color', names='red green blue')). When used for the functional API: `module`, if set, will be stored in the new class' __module__ attribute; `type`, if set, will be mixed in as the first base class. Note: if `module` is not set this routine will attempt to discover the calling module by walking the frame stack; if this is unsuccessful the resulting class will not be pickleable. """ if names is None: # simple value lookup return cls.__new__(cls, value) # otherwise, functional API: we're creating a new Enum type return cls._create_(value, names, module=module, type=type) def __contains__(cls, member): return isinstance(member, cls) and member.name in cls._member_map_ def __delattr__(cls, attr): # nicer error message when someone tries to delete an attribute # (see issue19025). if attr in cls._member_map_: raise AttributeError( "%s: cannot delete Enum member." % cls.__name__) super(EnumMeta, cls).__delattr__(attr) def __dir__(self): return (['__class__', '__doc__', '__members__', '__module__'] + self._member_names_) @property def __members__(cls): """Returns a mapping of member name->value. This mapping lists all enum members, including aliases. Note that this is a copy of the internal mapping. """ return cls._member_map_.copy() def __getattr__(cls, name): """Return the enum member matching `name` We use __getattr__ instead of descriptors or inserting into the enum class' __dict__ in order to support `name` and `value` being both properties for enum members (which live in the class' __dict__) and enum members themselves. """ if _is_dunder(name): raise AttributeError(name) try: return cls._member_map_[name] except KeyError: raise AttributeError(name) def __getitem__(cls, name): return cls._member_map_[name] def __iter__(cls): return (cls._member_map_[name] for name in cls._member_names_) def __reversed__(cls): return (cls._member_map_[name] for name in reversed(cls._member_names_)) def __len__(cls): return len(cls._member_names_) def __repr__(cls): return "<enum %r>" % cls.__name__ def __setattr__(cls, name, value): """Block attempts to reassign Enum members. A simple assignment to the class namespace only changes one of the several possible ways to get an Enum member from the Enum class, resulting in an inconsistent Enumeration. """ member_map = cls.__dict__.get('_member_map_', {}) if name in member_map: raise AttributeError('Cannot reassign members.') super(EnumMeta, cls).__setattr__(name, value) def _create_(cls, class_name, names=None, module=None, type=None): """Convenience method to create a new Enum class. `names` can be: * A string containing member names, separated either with spaces or commas. Values are auto-numbered from 1. * An iterable of member names. Values are auto-numbered from 1. * An iterable of (member name, value) pairs. * A mapping of member name -> value. """ if pyver < 3.0: # if class_name is unicode, attempt a conversion to ASCII if isinstance(class_name, unicode): try: class_name = class_name.encode('ascii') except UnicodeEncodeError: raise TypeError('%r is not representable in ASCII' % class_name) metacls = cls.__class__ if type is None: bases = (cls, ) else: bases = (type, cls) classdict = metacls.__prepare__(class_name, bases) __order__ = [] # special processing needed for names? if isinstance(names, basestring): names = names.replace(',', ' ').split() if isinstance(names, (tuple, list)) and isinstance(names[0], basestring): names = [(e, i+1) for (i, e) in enumerate(names)] # Here, names is either an iterable of (name, value) or a mapping. for item in names: if isinstance(item, basestring): member_name, member_value = item, names[item] else: member_name, member_value = item classdict[member_name] = member_value __order__.append(member_name) # only set __order__ in classdict if name/value was not from a mapping if not isinstance(item, basestring): classdict['__order__'] = ' '.join(__order__) enum_class = metacls.__new__(metacls, class_name, bases, classdict) # TODO: replace the frame hack if a blessed way to know the calling # module is ever developed if module is None: try: module = _sys._getframe(2).f_globals['__name__'] except (AttributeError, ValueError): pass if module is None: _make_class_unpicklable(enum_class) else: enum_class.__module__ = module return enum_class @staticmethod def _get_mixins_(bases): """Returns the type for creating enum members, and the first inherited enum class. bases: the tuple of bases that was given to __new__ """ if not bases or Enum is None: return object, Enum # double check that we are not subclassing a class with existing # enumeration members; while we're at it, see if any other data # type has been mixed in so we can use the correct __new__ member_type = first_enum = None for base in bases: if (base is not Enum and issubclass(base, Enum) and base._member_names_): raise TypeError("Cannot extend enumerations") # base is now the last base in bases if not issubclass(base, Enum): raise TypeError("new enumerations must be created as " "`ClassName([mixin_type,] enum_type)`") # get correct mix-in type (either mix-in type of Enum subclass, or # first base if last base is Enum) if not issubclass(bases[0], Enum): member_type = bases[0] # first data type first_enum = bases[-1] # enum type else: for base in bases[0].__mro__: # most common: (IntEnum, int, Enum, object) # possible: (<Enum 'AutoIntEnum'>, <Enum 'IntEnum'>, # <class 'int'>, <Enum 'Enum'>, # <class 'object'>) if issubclass(base, Enum): if first_enum is None: first_enum = base else: if member_type is None: member_type = base return member_type, first_enum if pyver < 3.0: @staticmethod def _find_new_(classdict, member_type, first_enum): """Returns the __new__ to be used for creating the enum members. classdict: the class dictionary given to __new__ member_type: the data type whose __new__ will be used by default first_enum: enumeration to check for an overriding __new__ """ # now find the correct __new__, checking to see of one was defined # by the user; also check earlier enum classes in case a __new__ was # saved as __member_new__ __new__ = classdict.get('__new__', None) if __new__: return None, True, True # __new__, save_new, use_args N__new__ = getattr(None, '__new__') O__new__ = getattr(object, '__new__') if Enum is None: E__new__ = N__new__ else: E__new__ = Enum.__dict__['__new__'] # check all possibles for __member_new__ before falling back to # __new__ for method in ('__member_new__', '__new__'): for possible in (member_type, first_enum): try: target = possible.__dict__[method] except (AttributeError, KeyError): target = getattr(possible, method, None) if target not in [ None, N__new__, O__new__, E__new__, ]: if method == '__member_new__': classdict['__new__'] = target return None, False, True if isinstance(target, staticmethod): target = target.__get__(member_type) __new__ = target break if __new__ is not None: break else: __new__ = object.__new__ # if a non-object.__new__ is used then whatever value/tuple was # assigned to the enum member name will be passed to __new__ and to the # new enum member's __init__ if __new__ is object.__new__: use_args = False else: use_args = True return __new__, False, use_args else: @staticmethod def _find_new_(classdict, member_type, first_enum): """Returns the __new__ to be used for creating the enum members. classdict: the class dictionary given to __new__ member_type: the data type whose __new__ will be used by default first_enum: enumeration to check for an overriding __new__ """ # now find the correct __new__, checking to see of one was defined # by the user; also check earlier enum classes in case a __new__ was # saved as __member_new__ __new__ = classdict.get('__new__', None) # should __new__ be saved as __member_new__ later? save_new = __new__ is not None if __new__ is None: # check all possibles for __member_new__ before falling back to # __new__ for method in ('__member_new__', '__new__'): for possible in (member_type, first_enum): target = getattr(possible, method, None) if target not in ( None, None.__new__, object.__new__, Enum.__new__, ): __new__ = target break if __new__ is not None: break else: __new__ = object.__new__ # if a non-object.__new__ is used then whatever value/tuple was # assigned to the enum member name will be passed to __new__ and to the # new enum member's __init__ if __new__ is object.__new__: use_args = False else: use_args = True return __new__, save_new, use_args ######################################################## # In order to support Python 2 and 3 with a single # codebase we have to create the Enum methods separately # and then use the `type(name, bases, dict)` method to # create the class. ######################################################## temp_enum_dict = {} temp_enum_dict['__doc__'] = "Generic enumeration.\n\n Derive from this class to define new enumerations.\n\n" def __new__(cls, value): # all enum instances are actually created during class construction # without calling this method; this method is called by the metaclass' # __call__ (i.e. Color(3) ), and by pickle if type(value) is cls: # For lookups like Color(Color.red) value = value.value #return value # by-value search for a matching enum member # see if it's in the reverse mapping (for hashable values) try: if value in cls._value2member_map_: return cls._value2member_map_[value] except TypeError: # not there, now do long search -- O(n) behavior for member in cls._member_map_.values(): if member.value == value: return member raise ValueError("%s is not a valid %s" % (value, cls.__name__)) temp_enum_dict['__new__'] = __new__ del __new__ def __repr__(self): return "<%s.%s: %r>" % ( self.__class__.__name__, self._name_, self._value_) temp_enum_dict['__repr__'] = __repr__ del __repr__ def __str__(self): return "%s.%s" % (self.__class__.__name__, self._name_) temp_enum_dict['__str__'] = __str__ del __str__ def __dir__(self): added_behavior = [ m for cls in self.__class__.mro() for m in cls.__dict__ if m[0] != '_' ] return (['__class__', '__doc__', '__module__', ] + added_behavior) temp_enum_dict['__dir__'] = __dir__ del __dir__ def __format__(self, format_spec): # mixed-in Enums should use the mixed-in type's __format__, otherwise # we can get strange results with the Enum name showing up instead of # the value # pure Enum branch if self._member_type_ is object: cls = str val = str(self) # mix-in branch else: cls = self._member_type_ val = self.value return cls.__format__(val, format_spec) temp_enum_dict['__format__'] = __format__ del __format__ #################################### # Python's less than 2.6 use __cmp__ if pyver < 2.6: def __cmp__(self, other): if type(other) is self.__class__: if self is other: return 0 return -1 return NotImplemented raise TypeError("unorderable types: %s() and %s()" % (self.__class__.__name__, other.__class__.__name__)) temp_enum_dict['__cmp__'] = __cmp__ del __cmp__ else: def __le__(self, other): raise TypeError("unorderable types: %s() <= %s()" % (self.__class__.__name__, other.__class__.__name__)) temp_enum_dict['__le__'] = __le__ del __le__ def __lt__(self, other): raise TypeError("unorderable types: %s() < %s()" % (self.__class__.__name__, other.__class__.__name__)) temp_enum_dict['__lt__'] = __lt__ del __lt__ def __ge__(self, other): raise TypeError("unorderable types: %s() >= %s()" % (self.__class__.__name__, other.__class__.__name__)) temp_enum_dict['__ge__'] = __ge__ del __ge__ def __gt__(self, other): raise TypeError("unorderable types: %s() > %s()" % (self.__class__.__name__, other.__class__.__name__)) temp_enum_dict['__gt__'] = __gt__ del __gt__ def __eq__(self, other): if type(other) is self.__class__: return self is other return NotImplemented temp_enum_dict['__eq__'] = __eq__ del __eq__ def __ne__(self, other): if type(other) is self.__class__: return self is not other return NotImplemented temp_enum_dict['__ne__'] = __ne__ del __ne__ def __hash__(self): return hash(self._name_) temp_enum_dict['__hash__'] = __hash__ del __hash__ def __reduce_ex__(self, proto): return self.__class__, (self._value_, ) temp_enum_dict['__reduce_ex__'] = __reduce_ex__ del __reduce_ex__ # _RouteClassAttributeToGetattr is used to provide access to the `name` # and `value` properties of enum members while keeping some measure of # protection from modification, while still allowing for an enumeration # to have members named `name` and `value`. This works because enumeration # members are not set directly on the enum class -- __getattr__ is # used to look them up. @_RouteClassAttributeToGetattr def name(self): return self._name_ temp_enum_dict['name'] = name del name @_RouteClassAttributeToGetattr def value(self): return self._value_ temp_enum_dict['value'] = value del value Enum = EnumMeta('Enum', (object, ), temp_enum_dict) del temp_enum_dict # Enum has now been created ########################### class IntEnum(int, Enum): """Enum where members are also (and must be) ints""" def unique(enumeration): """Class decorator that ensures only unique members exist in an enumeration.""" duplicates = [] for name, member in enumeration.__members__.items(): if name != member.name: duplicates.append((name, member.name)) if duplicates: duplicate_names = ', '.join( ["%s -> %s" % (alias, name) for (alias, name) in duplicates] ) raise ValueError('duplicate names found in %r: %s' % (enumeration, duplicate_names) ) return enumeration